Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 48
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Hinault
1
62 kgZoetemelk
2
68 kgKuiper
4
69 kgBernaudeau
5
64 kgVan Impe
11
59 kgNilsson
12
63 kgSchepers
15
60 kgMartin
24
62 kgBittinger
26
69 kgKnudsen
27
79 kgDidier
29
67 kgKelly
38
77 kgDuclos-Lassalle
46
73 kgden Hertog
48
76 kgDemeyer
57
85 kgJourdan
68
64 kgBourreau
79
63 kg
1
62 kgZoetemelk
2
68 kgKuiper
4
69 kgBernaudeau
5
64 kgVan Impe
11
59 kgNilsson
12
63 kgSchepers
15
60 kgMartin
24
62 kgBittinger
26
69 kgKnudsen
27
79 kgDidier
29
67 kgKelly
38
77 kgDuclos-Lassalle
46
73 kgden Hertog
48
76 kgDemeyer
57
85 kgJourdan
68
64 kgBourreau
79
63 kg
Weight (KG) →
Result →
85
59
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
2 | ZOETEMELK Joop | 68 |
4 | KUIPER Hennie | 69 |
5 | BERNAUDEAU Jean-René | 64 |
11 | VAN IMPE Lucien | 59 |
12 | NILSSON Sven-Åke | 63 |
15 | SCHEPERS Eddy | 60 |
24 | MARTIN Raymond | 62 |
26 | BITTINGER René | 69 |
27 | KNUDSEN Knut | 79 |
29 | DIDIER Lucien | 67 |
38 | KELLY Sean | 77 |
46 | DUCLOS-LASSALLE Gilbert | 73 |
48 | DEN HERTOG Fedor | 76 |
57 | DEMEYER Marc | 85 |
68 | JOURDAN Christian | 64 |
79 | BOURREAU Bernard | 63 |