Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 37
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Hinault
1
62 kgKnudsen
2
79 kgZoetemelk
5
68 kgPollentier
6
62 kgKuiper
11
69 kgVan Impe
14
59 kgNilsson
20
63 kgDemeyer
23
85 kgSutter
30
70 kgSchepers
34
60 kgDuclos-Lassalle
38
73 kgDierickx
42
74 kgBernaudeau
45
64 kgMartin
48
62 kgden Hertog
49
76 kgBittinger
62
69 kgViejo
66
64 kgDidier
73
67 kgJourdan
78
64 kgKelly
111
77 kgBourreau
114
63 kg
1
62 kgKnudsen
2
79 kgZoetemelk
5
68 kgPollentier
6
62 kgKuiper
11
69 kgVan Impe
14
59 kgNilsson
20
63 kgDemeyer
23
85 kgSutter
30
70 kgSchepers
34
60 kgDuclos-Lassalle
38
73 kgDierickx
42
74 kgBernaudeau
45
64 kgMartin
48
62 kgden Hertog
49
76 kgBittinger
62
69 kgViejo
66
64 kgDidier
73
67 kgJourdan
78
64 kgKelly
111
77 kgBourreau
114
63 kg
Weight (KG) →
Result →
85
59
1
114
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
2 | KNUDSEN Knut | 79 |
5 | ZOETEMELK Joop | 68 |
6 | POLLENTIER Michel | 62 |
11 | KUIPER Hennie | 69 |
14 | VAN IMPE Lucien | 59 |
20 | NILSSON Sven-Åke | 63 |
23 | DEMEYER Marc | 85 |
30 | SUTTER Ueli | 70 |
34 | SCHEPERS Eddy | 60 |
38 | DUCLOS-LASSALLE Gilbert | 73 |
42 | DIERICKX André | 74 |
45 | BERNAUDEAU Jean-René | 64 |
48 | MARTIN Raymond | 62 |
49 | DEN HERTOG Fedor | 76 |
62 | BITTINGER René | 69 |
66 | VIEJO José Luis | 64 |
73 | DIDIER Lucien | 67 |
78 | JOURDAN Christian | 64 |
111 | KELLY Sean | 77 |
114 | BOURREAU Bernard | 63 |