Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Didier
5
67 kgKuiper
6
69 kgDemeyer
8
85 kgKelly
9
77 kgBittinger
11
69 kgBernaudeau
19
64 kgHinault
20
62 kgJourdan
22
64 kgNilsson
30
63 kgZoetemelk
31
68 kgSchepers
35
60 kgDuclos-Lassalle
36
73 kgVan Impe
38
59 kgDierickx
40
74 kgBourreau
41
63 kgSutter
44
70 kgPollentier
50
62 kgKnudsen
51
79 kgMartin
52
62 kgden Hertog
59
76 kg
5
67 kgKuiper
6
69 kgDemeyer
8
85 kgKelly
9
77 kgBittinger
11
69 kgBernaudeau
19
64 kgHinault
20
62 kgJourdan
22
64 kgNilsson
30
63 kgZoetemelk
31
68 kgSchepers
35
60 kgDuclos-Lassalle
36
73 kgVan Impe
38
59 kgDierickx
40
74 kgBourreau
41
63 kgSutter
44
70 kgPollentier
50
62 kgKnudsen
51
79 kgMartin
52
62 kgden Hertog
59
76 kg
Weight (KG) →
Result →
85
59
5
59
# | Rider | Weight (KG) |
---|---|---|
5 | DIDIER Lucien | 67 |
6 | KUIPER Hennie | 69 |
8 | DEMEYER Marc | 85 |
9 | KELLY Sean | 77 |
11 | BITTINGER René | 69 |
19 | BERNAUDEAU Jean-René | 64 |
20 | HINAULT Bernard | 62 |
22 | JOURDAN Christian | 64 |
30 | NILSSON Sven-Åke | 63 |
31 | ZOETEMELK Joop | 68 |
35 | SCHEPERS Eddy | 60 |
36 | DUCLOS-LASSALLE Gilbert | 73 |
38 | VAN IMPE Lucien | 59 |
40 | DIERICKX André | 74 |
41 | BOURREAU Bernard | 63 |
44 | SUTTER Ueli | 70 |
50 | POLLENTIER Michel | 62 |
51 | KNUDSEN Knut | 79 |
52 | MARTIN Raymond | 62 |
59 | DEN HERTOG Fedor | 76 |