Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.2 * weight - 108
This means that on average for every extra kilogram weight a rider loses 2.2 positions in the result.
Bittinger
6
69 kgSchepers
13
60 kgHinault
14
62 kgVan Impe
15
59 kgZoetemelk
17
68 kgPollentier
19
62 kgBernaudeau
21
64 kgSutter
28
70 kgDidier
33
67 kgNilsson
34
63 kgMartin
37
62 kgKuiper
39
69 kgJourdan
47
64 kgDierickx
48
74 kgDuclos-Lassalle
59
73 kgKnudsen
60
79 kgKelly
61
77 kgden Hertog
70
76 kgDemeyer
88
85 kgBourreau
98
63 kg
6
69 kgSchepers
13
60 kgHinault
14
62 kgVan Impe
15
59 kgZoetemelk
17
68 kgPollentier
19
62 kgBernaudeau
21
64 kgSutter
28
70 kgDidier
33
67 kgNilsson
34
63 kgMartin
37
62 kgKuiper
39
69 kgJourdan
47
64 kgDierickx
48
74 kgDuclos-Lassalle
59
73 kgKnudsen
60
79 kgKelly
61
77 kgden Hertog
70
76 kgDemeyer
88
85 kgBourreau
98
63 kg
Weight (KG) →
Result →
85
59
6
98
# | Rider | Weight (KG) |
---|---|---|
6 | BITTINGER René | 69 |
13 | SCHEPERS Eddy | 60 |
14 | HINAULT Bernard | 62 |
15 | VAN IMPE Lucien | 59 |
17 | ZOETEMELK Joop | 68 |
19 | POLLENTIER Michel | 62 |
21 | BERNAUDEAU Jean-René | 64 |
28 | SUTTER Ueli | 70 |
33 | DIDIER Lucien | 67 |
34 | NILSSON Sven-Åke | 63 |
37 | MARTIN Raymond | 62 |
39 | KUIPER Hennie | 69 |
47 | JOURDAN Christian | 64 |
48 | DIERICKX André | 74 |
59 | DUCLOS-LASSALLE Gilbert | 73 |
60 | KNUDSEN Knut | 79 |
61 | KELLY Sean | 77 |
70 | DEN HERTOG Fedor | 76 |
88 | DEMEYER Marc | 85 |
98 | BOURREAU Bernard | 63 |