Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 91
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Demeyer
1
85 kgKelly
2
77 kgBernaudeau
11
64 kgJourdan
16
64 kgHinault
29
62 kgSchepers
33
60 kgBourreau
34
63 kgKuiper
35
69 kgBittinger
39
69 kgDidier
41
67 kgZoetemelk
42
68 kgDierickx
46
74 kgSutter
55
70 kgVan Impe
60
59 kgKnudsen
77
79 kgNilsson
86
63 kgPollentier
89
62 kgden Hertog
94
76 kgDuclos-Lassalle
95
73 kgMartin
99
62 kg
1
85 kgKelly
2
77 kgBernaudeau
11
64 kgJourdan
16
64 kgHinault
29
62 kgSchepers
33
60 kgBourreau
34
63 kgKuiper
35
69 kgBittinger
39
69 kgDidier
41
67 kgZoetemelk
42
68 kgDierickx
46
74 kgSutter
55
70 kgVan Impe
60
59 kgKnudsen
77
79 kgNilsson
86
63 kgPollentier
89
62 kgden Hertog
94
76 kgDuclos-Lassalle
95
73 kgMartin
99
62 kg
Weight (KG) →
Result →
85
59
1
99
# | Rider | Weight (KG) |
---|---|---|
1 | DEMEYER Marc | 85 |
2 | KELLY Sean | 77 |
11 | BERNAUDEAU Jean-René | 64 |
16 | JOURDAN Christian | 64 |
29 | HINAULT Bernard | 62 |
33 | SCHEPERS Eddy | 60 |
34 | BOURREAU Bernard | 63 |
35 | KUIPER Hennie | 69 |
39 | BITTINGER René | 69 |
41 | DIDIER Lucien | 67 |
42 | ZOETEMELK Joop | 68 |
46 | DIERICKX André | 74 |
55 | SUTTER Ueli | 70 |
60 | VAN IMPE Lucien | 59 |
77 | KNUDSEN Knut | 79 |
86 | NILSSON Sven-Åke | 63 |
89 | POLLENTIER Michel | 62 |
94 | DEN HERTOG Fedor | 76 |
95 | DUCLOS-LASSALLE Gilbert | 73 |
99 | MARTIN Raymond | 62 |