Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 42
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Hinault
1
62 kgZoetemelk
2
68 kgVan Impe
5
59 kgKuiper
7
69 kgKnudsen
8
79 kgSutter
11
70 kgBernaudeau
14
64 kgSchepers
16
60 kgNilsson
19
63 kgPollentier
20
62 kgMartin
25
62 kgBittinger
34
69 kgDierickx
35
74 kgDuclos-Lassalle
36
73 kgDidier
44
67 kgden Hertog
48
76 kgKelly
51
77 kgDemeyer
68
85 kgJourdan
76
64 kgBourreau
80
63 kg
1
62 kgZoetemelk
2
68 kgVan Impe
5
59 kgKuiper
7
69 kgKnudsen
8
79 kgSutter
11
70 kgBernaudeau
14
64 kgSchepers
16
60 kgNilsson
19
63 kgPollentier
20
62 kgMartin
25
62 kgBittinger
34
69 kgDierickx
35
74 kgDuclos-Lassalle
36
73 kgDidier
44
67 kgden Hertog
48
76 kgKelly
51
77 kgDemeyer
68
85 kgJourdan
76
64 kgBourreau
80
63 kg
Weight (KG) →
Result →
85
59
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
2 | ZOETEMELK Joop | 68 |
5 | VAN IMPE Lucien | 59 |
7 | KUIPER Hennie | 69 |
8 | KNUDSEN Knut | 79 |
11 | SUTTER Ueli | 70 |
14 | BERNAUDEAU Jean-René | 64 |
16 | SCHEPERS Eddy | 60 |
19 | NILSSON Sven-Åke | 63 |
20 | POLLENTIER Michel | 62 |
25 | MARTIN Raymond | 62 |
34 | BITTINGER René | 69 |
35 | DIERICKX André | 74 |
36 | DUCLOS-LASSALLE Gilbert | 73 |
44 | DIDIER Lucien | 67 |
48 | DEN HERTOG Fedor | 76 |
51 | KELLY Sean | 77 |
68 | DEMEYER Marc | 85 |
76 | JOURDAN Christian | 64 |
80 | BOURREAU Bernard | 63 |