Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 74
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Van Impe
1
59 kgHinault
2
62 kgPollentier
6
62 kgZoetemelk
9
68 kgBittinger
10
69 kgMartin
11
62 kgDidier
12
67 kgKuiper
13
69 kgBernaudeau
14
64 kgSutter
19
70 kgSchepers
23
60 kgKnudsen
27
79 kgKelly
31
77 kgBourreau
55
63 kgDemeyer
67
85 kgNilsson
76
63 kgden Hertog
78
76 kgDuclos-Lassalle
92
73 kgJourdan
94
64 kg
1
59 kgHinault
2
62 kgPollentier
6
62 kgZoetemelk
9
68 kgBittinger
10
69 kgMartin
11
62 kgDidier
12
67 kgKuiper
13
69 kgBernaudeau
14
64 kgSutter
19
70 kgSchepers
23
60 kgKnudsen
27
79 kgKelly
31
77 kgBourreau
55
63 kgDemeyer
67
85 kgNilsson
76
63 kgden Hertog
78
76 kgDuclos-Lassalle
92
73 kgJourdan
94
64 kg
Weight (KG) →
Result →
85
59
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | VAN IMPE Lucien | 59 |
2 | HINAULT Bernard | 62 |
6 | POLLENTIER Michel | 62 |
9 | ZOETEMELK Joop | 68 |
10 | BITTINGER René | 69 |
11 | MARTIN Raymond | 62 |
12 | DIDIER Lucien | 67 |
13 | KUIPER Hennie | 69 |
14 | BERNAUDEAU Jean-René | 64 |
19 | SUTTER Ueli | 70 |
23 | SCHEPERS Eddy | 60 |
27 | KNUDSEN Knut | 79 |
31 | KELLY Sean | 77 |
55 | BOURREAU Bernard | 63 |
67 | DEMEYER Marc | 85 |
76 | NILSSON Sven-Åke | 63 |
78 | DEN HERTOG Fedor | 76 |
92 | DUCLOS-LASSALLE Gilbert | 73 |
94 | JOURDAN Christian | 64 |