Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 69
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Bernaudeau
5
64 kgNilsson
6
63 kgHinault
8
62 kgZoetemelk
9
68 kgMartin
10
62 kgDidier
11
67 kgBittinger
13
69 kgVan Impe
15
59 kgSchepers
27
60 kgKuiper
29
69 kgden Hertog
33
76 kgJourdan
37
64 kgKnudsen
41
79 kgDuclos-Lassalle
44
73 kgBourreau
45
63 kgKelly
48
77 kgPollentier
54
62 kgDemeyer
62
85 kg
5
64 kgNilsson
6
63 kgHinault
8
62 kgZoetemelk
9
68 kgMartin
10
62 kgDidier
11
67 kgBittinger
13
69 kgVan Impe
15
59 kgSchepers
27
60 kgKuiper
29
69 kgden Hertog
33
76 kgJourdan
37
64 kgKnudsen
41
79 kgDuclos-Lassalle
44
73 kgBourreau
45
63 kgKelly
48
77 kgPollentier
54
62 kgDemeyer
62
85 kg
Weight (KG) →
Result →
85
59
5
62
# | Rider | Weight (KG) |
---|---|---|
5 | BERNAUDEAU Jean-René | 64 |
6 | NILSSON Sven-Åke | 63 |
8 | HINAULT Bernard | 62 |
9 | ZOETEMELK Joop | 68 |
10 | MARTIN Raymond | 62 |
11 | DIDIER Lucien | 67 |
13 | BITTINGER René | 69 |
15 | VAN IMPE Lucien | 59 |
27 | SCHEPERS Eddy | 60 |
29 | KUIPER Hennie | 69 |
33 | DEN HERTOG Fedor | 76 |
37 | JOURDAN Christian | 64 |
41 | KNUDSEN Knut | 79 |
44 | DUCLOS-LASSALLE Gilbert | 73 |
45 | BOURREAU Bernard | 63 |
48 | KELLY Sean | 77 |
54 | POLLENTIER Michel | 62 |
62 | DEMEYER Marc | 85 |