Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 76
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Zoetemelk
1
68 kgVan Impe
2
59 kgHinault
3
62 kgKuiper
8
69 kgBernaudeau
9
64 kgNilsson
14
63 kgDidier
16
67 kgMartin
21
62 kgKnudsen
27
79 kgBittinger
28
69 kgKelly
33
77 kgSchepers
35
60 kgden Hertog
42
76 kgJourdan
57
64 kgBourreau
59
63 kgDemeyer
68
85 kgDuclos-Lassalle
91
73 kg
1
68 kgVan Impe
2
59 kgHinault
3
62 kgKuiper
8
69 kgBernaudeau
9
64 kgNilsson
14
63 kgDidier
16
67 kgMartin
21
62 kgKnudsen
27
79 kgBittinger
28
69 kgKelly
33
77 kgSchepers
35
60 kgden Hertog
42
76 kgJourdan
57
64 kgBourreau
59
63 kgDemeyer
68
85 kgDuclos-Lassalle
91
73 kg
Weight (KG) →
Result →
85
59
1
91
# | Rider | Weight (KG) |
---|---|---|
1 | ZOETEMELK Joop | 68 |
2 | VAN IMPE Lucien | 59 |
3 | HINAULT Bernard | 62 |
8 | KUIPER Hennie | 69 |
9 | BERNAUDEAU Jean-René | 64 |
14 | NILSSON Sven-Åke | 63 |
16 | DIDIER Lucien | 67 |
21 | MARTIN Raymond | 62 |
27 | KNUDSEN Knut | 79 |
28 | BITTINGER René | 69 |
33 | KELLY Sean | 77 |
35 | SCHEPERS Eddy | 60 |
42 | DEN HERTOG Fedor | 76 |
57 | JOURDAN Christian | 64 |
59 | BOURREAU Bernard | 63 |
68 | DEMEYER Marc | 85 |
91 | DUCLOS-LASSALLE Gilbert | 73 |