Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 87
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Demeyer
3
85 kgHinault
4
62 kgKuiper
9
69 kgJourdan
13
64 kgKelly
14
77 kgBernaudeau
15
64 kgDidier
25
67 kgDuclos-Lassalle
32
73 kgBittinger
38
69 kgZoetemelk
41
68 kgVan Impe
44
59 kgBourreau
48
63 kgden Hertog
56
76 kgNilsson
57
63 kgSchepers
79
60 kgKnudsen
81
79 kgMartin
83
62 kg
3
85 kgHinault
4
62 kgKuiper
9
69 kgJourdan
13
64 kgKelly
14
77 kgBernaudeau
15
64 kgDidier
25
67 kgDuclos-Lassalle
32
73 kgBittinger
38
69 kgZoetemelk
41
68 kgVan Impe
44
59 kgBourreau
48
63 kgden Hertog
56
76 kgNilsson
57
63 kgSchepers
79
60 kgKnudsen
81
79 kgMartin
83
62 kg
Weight (KG) →
Result →
85
59
3
83
# | Rider | Weight (KG) |
---|---|---|
3 | DEMEYER Marc | 85 |
4 | HINAULT Bernard | 62 |
9 | KUIPER Hennie | 69 |
13 | JOURDAN Christian | 64 |
14 | KELLY Sean | 77 |
15 | BERNAUDEAU Jean-René | 64 |
25 | DIDIER Lucien | 67 |
32 | DUCLOS-LASSALLE Gilbert | 73 |
38 | BITTINGER René | 69 |
41 | ZOETEMELK Joop | 68 |
44 | VAN IMPE Lucien | 59 |
48 | BOURREAU Bernard | 63 |
56 | DEN HERTOG Fedor | 76 |
57 | NILSSON Sven-Åke | 63 |
79 | SCHEPERS Eddy | 60 |
81 | KNUDSEN Knut | 79 |
83 | MARTIN Raymond | 62 |