Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Van Impe
3
59 kgHinault
5
62 kgDemeyer
7
85 kgKuiper
9
69 kgZoetemelk
18
68 kgKelly
20
77 kgNilsson
23
63 kgDidier
26
67 kgBernaudeau
29
64 kgBourreau
36
63 kgSchepers
38
60 kgBittinger
49
69 kgMartin
64
62 kgden Hertog
65
76 kgDuclos-Lassalle
67
73 kgKnudsen
71
79 kgJourdan
77
64 kg
3
59 kgHinault
5
62 kgDemeyer
7
85 kgKuiper
9
69 kgZoetemelk
18
68 kgKelly
20
77 kgNilsson
23
63 kgDidier
26
67 kgBernaudeau
29
64 kgBourreau
36
63 kgSchepers
38
60 kgBittinger
49
69 kgMartin
64
62 kgden Hertog
65
76 kgDuclos-Lassalle
67
73 kgKnudsen
71
79 kgJourdan
77
64 kg
Weight (KG) →
Result →
85
59
3
77
# | Rider | Weight (KG) |
---|---|---|
3 | VAN IMPE Lucien | 59 |
5 | HINAULT Bernard | 62 |
7 | DEMEYER Marc | 85 |
9 | KUIPER Hennie | 69 |
18 | ZOETEMELK Joop | 68 |
20 | KELLY Sean | 77 |
23 | NILSSON Sven-Åke | 63 |
26 | DIDIER Lucien | 67 |
29 | BERNAUDEAU Jean-René | 64 |
36 | BOURREAU Bernard | 63 |
38 | SCHEPERS Eddy | 60 |
49 | BITTINGER René | 69 |
64 | MARTIN Raymond | 62 |
65 | DEN HERTOG Fedor | 76 |
67 | DUCLOS-LASSALLE Gilbert | 73 |
71 | KNUDSEN Knut | 79 |
77 | JOURDAN Christian | 64 |