Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Hinault
1
62 kgZoetemelk
2
68 kgKnudsen
4
79 kgVan Impe
7
59 kgKuiper
11
69 kgNilsson
21
63 kgden Hertog
30
76 kgBernaudeau
34
64 kgSchepers
36
60 kgDidier
41
67 kgDemeyer
43
85 kgKelly
56
77 kgMartin
60
62 kgJourdan
70
64 kgDuclos-Lassalle
73
73 kgBourreau
77
63 kgBittinger
84
69 kg
1
62 kgZoetemelk
2
68 kgKnudsen
4
79 kgVan Impe
7
59 kgKuiper
11
69 kgNilsson
21
63 kgden Hertog
30
76 kgBernaudeau
34
64 kgSchepers
36
60 kgDidier
41
67 kgDemeyer
43
85 kgKelly
56
77 kgMartin
60
62 kgJourdan
70
64 kgDuclos-Lassalle
73
73 kgBourreau
77
63 kgBittinger
84
69 kg
Weight (KG) →
Result →
85
59
1
84
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
2 | ZOETEMELK Joop | 68 |
4 | KNUDSEN Knut | 79 |
7 | VAN IMPE Lucien | 59 |
11 | KUIPER Hennie | 69 |
21 | NILSSON Sven-Åke | 63 |
30 | DEN HERTOG Fedor | 76 |
34 | BERNAUDEAU Jean-René | 64 |
36 | SCHEPERS Eddy | 60 |
41 | DIDIER Lucien | 67 |
43 | DEMEYER Marc | 85 |
56 | KELLY Sean | 77 |
60 | MARTIN Raymond | 62 |
70 | JOURDAN Christian | 64 |
73 | DUCLOS-LASSALLE Gilbert | 73 |
77 | BOURREAU Bernard | 63 |
84 | BITTINGER René | 69 |