Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 84
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Demeyer
3
85 kgKelly
10
77 kgKuiper
12
69 kgBernaudeau
13
64 kgHinault
18
62 kgJourdan
27
64 kgBourreau
31
63 kgSchepers
36
60 kgDuclos-Lassalle
39
73 kgden Hertog
46
76 kgDidier
49
67 kgNilsson
55
63 kgMartin
63
62 kgVan Impe
66
59 kgZoetemelk
74
68 kgKnudsen
75
79 kgBittinger
90
69 kg
3
85 kgKelly
10
77 kgKuiper
12
69 kgBernaudeau
13
64 kgHinault
18
62 kgJourdan
27
64 kgBourreau
31
63 kgSchepers
36
60 kgDuclos-Lassalle
39
73 kgden Hertog
46
76 kgDidier
49
67 kgNilsson
55
63 kgMartin
63
62 kgVan Impe
66
59 kgZoetemelk
74
68 kgKnudsen
75
79 kgBittinger
90
69 kg
Weight (KG) →
Result →
85
59
3
90
# | Rider | Weight (KG) |
---|---|---|
3 | DEMEYER Marc | 85 |
10 | KELLY Sean | 77 |
12 | KUIPER Hennie | 69 |
13 | BERNAUDEAU Jean-René | 64 |
18 | HINAULT Bernard | 62 |
27 | JOURDAN Christian | 64 |
31 | BOURREAU Bernard | 63 |
36 | SCHEPERS Eddy | 60 |
39 | DUCLOS-LASSALLE Gilbert | 73 |
46 | DEN HERTOG Fedor | 76 |
49 | DIDIER Lucien | 67 |
55 | NILSSON Sven-Åke | 63 |
63 | MARTIN Raymond | 62 |
66 | VAN IMPE Lucien | 59 |
74 | ZOETEMELK Joop | 68 |
75 | KNUDSEN Knut | 79 |
90 | BITTINGER René | 69 |