Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 61
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Hinault
1
62 kgDemeyer
2
85 kgKelly
8
77 kgBernaudeau
15
64 kgZoetemelk
16
68 kgVan Impe
21
59 kgKuiper
25
69 kgSchepers
34
60 kgDidier
40
67 kgBourreau
41
63 kgKnudsen
50
79 kgMartin
56
62 kgBittinger
59
69 kgden Hertog
61
76 kgNilsson
66
63 kgDuclos-Lassalle
78
73 kgJourdan
80
64 kg
1
62 kgDemeyer
2
85 kgKelly
8
77 kgBernaudeau
15
64 kgZoetemelk
16
68 kgVan Impe
21
59 kgKuiper
25
69 kgSchepers
34
60 kgDidier
40
67 kgBourreau
41
63 kgKnudsen
50
79 kgMartin
56
62 kgBittinger
59
69 kgden Hertog
61
76 kgNilsson
66
63 kgDuclos-Lassalle
78
73 kgJourdan
80
64 kg
Weight (KG) →
Result →
85
59
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
2 | DEMEYER Marc | 85 |
8 | KELLY Sean | 77 |
15 | BERNAUDEAU Jean-René | 64 |
16 | ZOETEMELK Joop | 68 |
21 | VAN IMPE Lucien | 59 |
25 | KUIPER Hennie | 69 |
34 | SCHEPERS Eddy | 60 |
40 | DIDIER Lucien | 67 |
41 | BOURREAU Bernard | 63 |
50 | KNUDSEN Knut | 79 |
56 | MARTIN Raymond | 62 |
59 | BITTINGER René | 69 |
61 | DEN HERTOG Fedor | 76 |
66 | NILSSON Sven-Åke | 63 |
78 | DUCLOS-LASSALLE Gilbert | 73 |
80 | JOURDAN Christian | 64 |