Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Hinault
1
62 kgZoetemelk
2
68 kgKelly
6
77 kgKnudsen
28
79 kgBernaudeau
31
64 kgBittinger
33
69 kgSchepers
35
60 kgVan Impe
36
59 kgKuiper
38
69 kgNilsson
43
63 kgMartin
44
62 kgden Hertog
49
76 kgDuclos-Lassalle
55
73 kgDemeyer
70
85 kgBourreau
71
63 kgDidier
72
67 kgJourdan
74
64 kg
1
62 kgZoetemelk
2
68 kgKelly
6
77 kgKnudsen
28
79 kgBernaudeau
31
64 kgBittinger
33
69 kgSchepers
35
60 kgVan Impe
36
59 kgKuiper
38
69 kgNilsson
43
63 kgMartin
44
62 kgden Hertog
49
76 kgDuclos-Lassalle
55
73 kgDemeyer
70
85 kgBourreau
71
63 kgDidier
72
67 kgJourdan
74
64 kg
Weight (KG) →
Result →
85
59
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
2 | ZOETEMELK Joop | 68 |
6 | KELLY Sean | 77 |
28 | KNUDSEN Knut | 79 |
31 | BERNAUDEAU Jean-René | 64 |
33 | BITTINGER René | 69 |
35 | SCHEPERS Eddy | 60 |
36 | VAN IMPE Lucien | 59 |
38 | KUIPER Hennie | 69 |
43 | NILSSON Sven-Åke | 63 |
44 | MARTIN Raymond | 62 |
49 | DEN HERTOG Fedor | 76 |
55 | DUCLOS-LASSALLE Gilbert | 73 |
70 | DEMEYER Marc | 85 |
71 | BOURREAU Bernard | 63 |
72 | DIDIER Lucien | 67 |
74 | JOURDAN Christian | 64 |