Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.3 * weight - 181
This means that on average for every extra kilogram weight a rider loses 3.3 positions in the result.
Hinault
1
62 kgVan Impe
2
59 kgZoetemelk
4
68 kgWinnen
5
60 kgBernaudeau
6
64 kgNilsson
8
63 kgDe Wolf
11
75 kgSchepers
16
60 kgMartin
17
62 kgDidier
22
67 kgDuclos-Lassalle
28
73 kgOvion
29
64 kgKuiper
30
69 kgde Rooij
39
69 kgKelly
48
77 kgThaler
49
60 kgFernández
50
68 kgMaertens
66
65 kgBourreau
72
63 kgMartinez
91
80 kgHoste
95
76 kgVilamajo
100
70 kgvan den Hoek
115
77 kg
1
62 kgVan Impe
2
59 kgZoetemelk
4
68 kgWinnen
5
60 kgBernaudeau
6
64 kgNilsson
8
63 kgDe Wolf
11
75 kgSchepers
16
60 kgMartin
17
62 kgDidier
22
67 kgDuclos-Lassalle
28
73 kgOvion
29
64 kgKuiper
30
69 kgde Rooij
39
69 kgKelly
48
77 kgThaler
49
60 kgFernández
50
68 kgMaertens
66
65 kgBourreau
72
63 kgMartinez
91
80 kgHoste
95
76 kgVilamajo
100
70 kgvan den Hoek
115
77 kg
Weight (KG) →
Result →
80
59
1
115
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
2 | VAN IMPE Lucien | 59 |
4 | ZOETEMELK Joop | 68 |
5 | WINNEN Peter | 60 |
6 | BERNAUDEAU Jean-René | 64 |
8 | NILSSON Sven-Åke | 63 |
11 | DE WOLF Fons | 75 |
16 | SCHEPERS Eddy | 60 |
17 | MARTIN Raymond | 62 |
22 | DIDIER Lucien | 67 |
28 | DUCLOS-LASSALLE Gilbert | 73 |
29 | OVION Régis | 64 |
30 | KUIPER Hennie | 69 |
39 | DE ROOIJ Theo | 69 |
48 | KELLY Sean | 77 |
49 | THALER Klaus-Peter | 60 |
50 | FERNÁNDEZ Juan | 68 |
66 | MAERTENS Freddy | 65 |
72 | BOURREAU Bernard | 63 |
91 | MARTINEZ Paulino | 80 |
95 | HOSTE Frank | 76 |
100 | VILAMAJO Jaime | 70 |
115 | VAN DEN HOEK Aad | 77 |