Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 14
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Kelly
1
77 kgBernaudeau
10
64 kgKuiper
12
69 kgNilsson
15
63 kgOvion
23
64 kgFernández
27
68 kgDuclos-Lassalle
28
73 kgDe Wolf
29
75 kgThaler
30
60 kgSchepers
33
60 kgHinault
36
62 kgZoetemelk
37
68 kgWinnen
41
60 kgDidier
42
67 kgVan Impe
47
59 kgde Rooij
58
69 kgMartin
59
62 kgMartinez
67
80 kgMaertens
80
65 kgVilamajo
89
70 kgvan den Hoek
95
77 kgHoste
96
76 kgBourreau
105
63 kg
1
77 kgBernaudeau
10
64 kgKuiper
12
69 kgNilsson
15
63 kgOvion
23
64 kgFernández
27
68 kgDuclos-Lassalle
28
73 kgDe Wolf
29
75 kgThaler
30
60 kgSchepers
33
60 kgHinault
36
62 kgZoetemelk
37
68 kgWinnen
41
60 kgDidier
42
67 kgVan Impe
47
59 kgde Rooij
58
69 kgMartin
59
62 kgMartinez
67
80 kgMaertens
80
65 kgVilamajo
89
70 kgvan den Hoek
95
77 kgHoste
96
76 kgBourreau
105
63 kg
Weight (KG) →
Result →
80
59
1
105
# | Rider | Weight (KG) |
---|---|---|
1 | KELLY Sean | 77 |
10 | BERNAUDEAU Jean-René | 64 |
12 | KUIPER Hennie | 69 |
15 | NILSSON Sven-Åke | 63 |
23 | OVION Régis | 64 |
27 | FERNÁNDEZ Juan | 68 |
28 | DUCLOS-LASSALLE Gilbert | 73 |
29 | DE WOLF Fons | 75 |
30 | THALER Klaus-Peter | 60 |
33 | SCHEPERS Eddy | 60 |
36 | HINAULT Bernard | 62 |
37 | ZOETEMELK Joop | 68 |
41 | WINNEN Peter | 60 |
42 | DIDIER Lucien | 67 |
47 | VAN IMPE Lucien | 59 |
58 | DE ROOIJ Theo | 69 |
59 | MARTIN Raymond | 62 |
67 | MARTINEZ Paulino | 80 |
80 | MAERTENS Freddy | 65 |
89 | VILAMAJO Jaime | 70 |
95 | VAN DEN HOEK Aad | 77 |
96 | HOSTE Frank | 76 |
105 | BOURREAU Bernard | 63 |