Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.4 * weight - 183
This means that on average for every extra kilogram weight a rider loses 3.4 positions in the result.
Nilsson
2
63 kgDe Wolf
4
75 kgSchepers
5
60 kgBernaudeau
6
64 kgWinnen
9
60 kgVan Impe
12
59 kgHinault
13
62 kgZoetemelk
15
68 kgMartin
16
62 kgKuiper
26
69 kgDuclos-Lassalle
28
73 kgOvion
32
64 kgDidier
36
67 kgFernández
44
68 kgKelly
50
77 kgThaler
51
60 kgBourreau
81
63 kgMaertens
83
65 kgVilamajo
88
70 kgHoste
89
76 kgde Rooij
107
69 kgMartinez
108
80 kgvan den Hoek
123
77 kg
2
63 kgDe Wolf
4
75 kgSchepers
5
60 kgBernaudeau
6
64 kgWinnen
9
60 kgVan Impe
12
59 kgHinault
13
62 kgZoetemelk
15
68 kgMartin
16
62 kgKuiper
26
69 kgDuclos-Lassalle
28
73 kgOvion
32
64 kgDidier
36
67 kgFernández
44
68 kgKelly
50
77 kgThaler
51
60 kgBourreau
81
63 kgMaertens
83
65 kgVilamajo
88
70 kgHoste
89
76 kgde Rooij
107
69 kgMartinez
108
80 kgvan den Hoek
123
77 kg
Weight (KG) →
Result →
80
59
2
123
# | Rider | Weight (KG) |
---|---|---|
2 | NILSSON Sven-Åke | 63 |
4 | DE WOLF Fons | 75 |
5 | SCHEPERS Eddy | 60 |
6 | BERNAUDEAU Jean-René | 64 |
9 | WINNEN Peter | 60 |
12 | VAN IMPE Lucien | 59 |
13 | HINAULT Bernard | 62 |
15 | ZOETEMELK Joop | 68 |
16 | MARTIN Raymond | 62 |
26 | KUIPER Hennie | 69 |
28 | DUCLOS-LASSALLE Gilbert | 73 |
32 | OVION Régis | 64 |
36 | DIDIER Lucien | 67 |
44 | FERNÁNDEZ Juan | 68 |
50 | KELLY Sean | 77 |
51 | THALER Klaus-Peter | 60 |
81 | BOURREAU Bernard | 63 |
83 | MAERTENS Freddy | 65 |
88 | VILAMAJO Jaime | 70 |
89 | HOSTE Frank | 76 |
107 | DE ROOIJ Theo | 69 |
108 | MARTINEZ Paulino | 80 |
123 | VAN DEN HOEK Aad | 77 |