Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.9 * weight - 153
This means that on average for every extra kilogram weight a rider loses 2.9 positions in the result.
Winnen
1
60 kgHinault
2
62 kgVan Impe
3
59 kgZoetemelk
6
68 kgDe Wolf
9
75 kgBernaudeau
10
64 kgNilsson
11
63 kgMartin
18
62 kgKuiper
25
69 kgSchepers
27
60 kgDidier
28
67 kgOvion
31
64 kgde Rooij
47
69 kgDuclos-Lassalle
51
73 kgThaler
54
60 kgMartinez
57
80 kgFernández
65
68 kgKelly
68
77 kgMaertens
71
65 kgBourreau
81
63 kgHoste
88
76 kgVilamajo
92
70 kgvan den Hoek
121
77 kg
1
60 kgHinault
2
62 kgVan Impe
3
59 kgZoetemelk
6
68 kgDe Wolf
9
75 kgBernaudeau
10
64 kgNilsson
11
63 kgMartin
18
62 kgKuiper
25
69 kgSchepers
27
60 kgDidier
28
67 kgOvion
31
64 kgde Rooij
47
69 kgDuclos-Lassalle
51
73 kgThaler
54
60 kgMartinez
57
80 kgFernández
65
68 kgKelly
68
77 kgMaertens
71
65 kgBourreau
81
63 kgHoste
88
76 kgVilamajo
92
70 kgvan den Hoek
121
77 kg
Weight (KG) →
Result →
80
59
1
121
# | Rider | Weight (KG) |
---|---|---|
1 | WINNEN Peter | 60 |
2 | HINAULT Bernard | 62 |
3 | VAN IMPE Lucien | 59 |
6 | ZOETEMELK Joop | 68 |
9 | DE WOLF Fons | 75 |
10 | BERNAUDEAU Jean-René | 64 |
11 | NILSSON Sven-Åke | 63 |
18 | MARTIN Raymond | 62 |
25 | KUIPER Hennie | 69 |
27 | SCHEPERS Eddy | 60 |
28 | DIDIER Lucien | 67 |
31 | OVION Régis | 64 |
47 | DE ROOIJ Theo | 69 |
51 | DUCLOS-LASSALLE Gilbert | 73 |
54 | THALER Klaus-Peter | 60 |
57 | MARTINEZ Paulino | 80 |
65 | FERNÁNDEZ Juan | 68 |
68 | KELLY Sean | 77 |
71 | MAERTENS Freddy | 65 |
81 | BOURREAU Bernard | 63 |
88 | HOSTE Frank | 76 |
92 | VILAMAJO Jaime | 70 |
121 | VAN DEN HOEK Aad | 77 |