Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.3 * weight - 113
This means that on average for every extra kilogram weight a rider loses 2.3 positions in the result.
Hinault
1
62 kgBernaudeau
2
64 kgDe Wolf
3
75 kgVan Impe
5
59 kgNilsson
7
63 kgZoetemelk
9
68 kgMartin
11
62 kgDidier
17
67 kgWinnen
18
60 kgSchepers
21
60 kgKelly
28
77 kgMartinez
30
80 kgFernández
33
68 kgOvion
36
64 kgThaler
53
60 kgDuclos-Lassalle
59
73 kgMaertens
67
65 kgKuiper
71
69 kgde Rooij
78
69 kgBourreau
103
63 kgHoste
106
76 kgVilamajo
113
70 kgvan den Hoek
122
77 kg
1
62 kgBernaudeau
2
64 kgDe Wolf
3
75 kgVan Impe
5
59 kgNilsson
7
63 kgZoetemelk
9
68 kgMartin
11
62 kgDidier
17
67 kgWinnen
18
60 kgSchepers
21
60 kgKelly
28
77 kgMartinez
30
80 kgFernández
33
68 kgOvion
36
64 kgThaler
53
60 kgDuclos-Lassalle
59
73 kgMaertens
67
65 kgKuiper
71
69 kgde Rooij
78
69 kgBourreau
103
63 kgHoste
106
76 kgVilamajo
113
70 kgvan den Hoek
122
77 kg
Weight (KG) →
Result →
80
59
1
122
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
2 | BERNAUDEAU Jean-René | 64 |
3 | DE WOLF Fons | 75 |
5 | VAN IMPE Lucien | 59 |
7 | NILSSON Sven-Åke | 63 |
9 | ZOETEMELK Joop | 68 |
11 | MARTIN Raymond | 62 |
17 | DIDIER Lucien | 67 |
18 | WINNEN Peter | 60 |
21 | SCHEPERS Eddy | 60 |
28 | KELLY Sean | 77 |
30 | MARTINEZ Paulino | 80 |
33 | FERNÁNDEZ Juan | 68 |
36 | OVION Régis | 64 |
53 | THALER Klaus-Peter | 60 |
59 | DUCLOS-LASSALLE Gilbert | 73 |
67 | MAERTENS Freddy | 65 |
71 | KUIPER Hennie | 69 |
78 | DE ROOIJ Theo | 69 |
103 | BOURREAU Bernard | 63 |
106 | HOSTE Frank | 76 |
113 | VILAMAJO Jaime | 70 |
122 | VAN DEN HOEK Aad | 77 |