Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 48
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Hinault
2
62 kgBernaudeau
8
64 kgNilsson
9
63 kgWinnen
11
60 kgZoetemelk
12
68 kgVan Impe
13
59 kgDidier
22
67 kgde Rooij
24
69 kgKelly
30
77 kgDuclos-Lassalle
36
73 kgHoste
41
76 kgKuiper
47
69 kgDe Wolf
56
75 kgMartin
66
62 kgThaler
72
60 kgOvion
74
64 kgFernández
83
68 kgMaertens
89
65 kgSchepers
92
60 kgVilamajo
100
70 kgvan den Hoek
107
77 kgBourreau
112
63 kgMartinez
114
80 kg
2
62 kgBernaudeau
8
64 kgNilsson
9
63 kgWinnen
11
60 kgZoetemelk
12
68 kgVan Impe
13
59 kgDidier
22
67 kgde Rooij
24
69 kgKelly
30
77 kgDuclos-Lassalle
36
73 kgHoste
41
76 kgKuiper
47
69 kgDe Wolf
56
75 kgMartin
66
62 kgThaler
72
60 kgOvion
74
64 kgFernández
83
68 kgMaertens
89
65 kgSchepers
92
60 kgVilamajo
100
70 kgvan den Hoek
107
77 kgBourreau
112
63 kgMartinez
114
80 kg
Weight (KG) →
Result →
80
59
2
114
# | Rider | Weight (KG) |
---|---|---|
2 | HINAULT Bernard | 62 |
8 | BERNAUDEAU Jean-René | 64 |
9 | NILSSON Sven-Åke | 63 |
11 | WINNEN Peter | 60 |
12 | ZOETEMELK Joop | 68 |
13 | VAN IMPE Lucien | 59 |
22 | DIDIER Lucien | 67 |
24 | DE ROOIJ Theo | 69 |
30 | KELLY Sean | 77 |
36 | DUCLOS-LASSALLE Gilbert | 73 |
41 | HOSTE Frank | 76 |
47 | KUIPER Hennie | 69 |
56 | DE WOLF Fons | 75 |
66 | MARTIN Raymond | 62 |
72 | THALER Klaus-Peter | 60 |
74 | OVION Régis | 64 |
83 | FERNÁNDEZ Juan | 68 |
89 | MAERTENS Freddy | 65 |
92 | SCHEPERS Eddy | 60 |
100 | VILAMAJO Jaime | 70 |
107 | VAN DEN HOEK Aad | 77 |
112 | BOURREAU Bernard | 63 |
114 | MARTINEZ Paulino | 80 |