Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.6 * weight - 125
This means that on average for every extra kilogram weight a rider loses 2.6 positions in the result.
Hinault
1
62 kgVan Impe
5
59 kgDuclos-Lassalle
6
73 kgZoetemelk
9
68 kgMaertens
10
65 kgDe Wolf
12
75 kgWinnen
19
60 kgBernaudeau
20
64 kgSchepers
21
60 kgNilsson
31
63 kgMartin
41
62 kgDidier
42
67 kgde Rooij
46
69 kgOvion
54
64 kgHoste
67
76 kgFernández
70
68 kgVilamajo
75
70 kgKelly
83
77 kgKuiper
88
69 kgThaler
96
60 kgMartinez
112
80 kgBourreau
115
63 kgvan den Hoek
121
77 kg
1
62 kgVan Impe
5
59 kgDuclos-Lassalle
6
73 kgZoetemelk
9
68 kgMaertens
10
65 kgDe Wolf
12
75 kgWinnen
19
60 kgBernaudeau
20
64 kgSchepers
21
60 kgNilsson
31
63 kgMartin
41
62 kgDidier
42
67 kgde Rooij
46
69 kgOvion
54
64 kgHoste
67
76 kgFernández
70
68 kgVilamajo
75
70 kgKelly
83
77 kgKuiper
88
69 kgThaler
96
60 kgMartinez
112
80 kgBourreau
115
63 kgvan den Hoek
121
77 kg
Weight (KG) →
Result →
80
59
1
121
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
5 | VAN IMPE Lucien | 59 |
6 | DUCLOS-LASSALLE Gilbert | 73 |
9 | ZOETEMELK Joop | 68 |
10 | MAERTENS Freddy | 65 |
12 | DE WOLF Fons | 75 |
19 | WINNEN Peter | 60 |
20 | BERNAUDEAU Jean-René | 64 |
21 | SCHEPERS Eddy | 60 |
31 | NILSSON Sven-Åke | 63 |
41 | MARTIN Raymond | 62 |
42 | DIDIER Lucien | 67 |
46 | DE ROOIJ Theo | 69 |
54 | OVION Régis | 64 |
67 | HOSTE Frank | 76 |
70 | FERNÁNDEZ Juan | 68 |
75 | VILAMAJO Jaime | 70 |
83 | KELLY Sean | 77 |
88 | KUIPER Hennie | 69 |
96 | THALER Klaus-Peter | 60 |
112 | MARTINEZ Paulino | 80 |
115 | BOURREAU Bernard | 63 |
121 | VAN DEN HOEK Aad | 77 |