Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 23
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
de Rooij
11
69 kgDuclos-Lassalle
19
73 kgKuiper
22
69 kgBourreau
27
63 kgKelly
28
77 kgThaler
30
60 kgWinnen
33
60 kgHinault
36
62 kgZoetemelk
37
68 kgBernaudeau
41
64 kgDidier
43
67 kgVan Impe
45
59 kgHoste
49
76 kgMaertens
51
65 kgOvion
54
64 kgNilsson
63
63 kgvan den Hoek
71
77 kgMartin
72
62 kgFernández
77
68 kgSchepers
78
60 kgDe Wolf
83
75 kgVilamajo
85
70 kgMartinez
112
80 kg
11
69 kgDuclos-Lassalle
19
73 kgKuiper
22
69 kgBourreau
27
63 kgKelly
28
77 kgThaler
30
60 kgWinnen
33
60 kgHinault
36
62 kgZoetemelk
37
68 kgBernaudeau
41
64 kgDidier
43
67 kgVan Impe
45
59 kgHoste
49
76 kgMaertens
51
65 kgOvion
54
64 kgNilsson
63
63 kgvan den Hoek
71
77 kgMartin
72
62 kgFernández
77
68 kgSchepers
78
60 kgDe Wolf
83
75 kgVilamajo
85
70 kgMartinez
112
80 kg
Weight (KG) →
Result →
80
59
11
112
# | Rider | Weight (KG) |
---|---|---|
11 | DE ROOIJ Theo | 69 |
19 | DUCLOS-LASSALLE Gilbert | 73 |
22 | KUIPER Hennie | 69 |
27 | BOURREAU Bernard | 63 |
28 | KELLY Sean | 77 |
30 | THALER Klaus-Peter | 60 |
33 | WINNEN Peter | 60 |
36 | HINAULT Bernard | 62 |
37 | ZOETEMELK Joop | 68 |
41 | BERNAUDEAU Jean-René | 64 |
43 | DIDIER Lucien | 67 |
45 | VAN IMPE Lucien | 59 |
49 | HOSTE Frank | 76 |
51 | MAERTENS Freddy | 65 |
54 | OVION Régis | 64 |
63 | NILSSON Sven-Åke | 63 |
71 | VAN DEN HOEK Aad | 77 |
72 | MARTIN Raymond | 62 |
77 | FERNÁNDEZ Juan | 68 |
78 | SCHEPERS Eddy | 60 |
83 | DE WOLF Fons | 75 |
85 | VILAMAJO Jaime | 70 |
112 | MARTINEZ Paulino | 80 |