Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Maertens
1
65 kgDe Wolf
2
75 kgThaler
3
60 kgKelly
6
77 kgBernaudeau
17
64 kgOvion
24
64 kgBourreau
28
63 kgFernández
29
68 kgHinault
36
62 kgHoste
41
76 kgVilamajo
42
70 kgDidier
44
67 kgZoetemelk
48
68 kgNilsson
57
63 kgDuclos-Lassalle
59
73 kgSchepers
61
60 kgKuiper
64
69 kgMartin
82
62 kgWinnen
85
60 kgVan Impe
89
59 kgde Rooij
91
69 kgvan den Hoek
97
77 kgMartinez
113
80 kg
1
65 kgDe Wolf
2
75 kgThaler
3
60 kgKelly
6
77 kgBernaudeau
17
64 kgOvion
24
64 kgBourreau
28
63 kgFernández
29
68 kgHinault
36
62 kgHoste
41
76 kgVilamajo
42
70 kgDidier
44
67 kgZoetemelk
48
68 kgNilsson
57
63 kgDuclos-Lassalle
59
73 kgSchepers
61
60 kgKuiper
64
69 kgMartin
82
62 kgWinnen
85
60 kgVan Impe
89
59 kgde Rooij
91
69 kgvan den Hoek
97
77 kgMartinez
113
80 kg
Weight (KG) →
Result →
80
59
1
113
# | Rider | Weight (KG) |
---|---|---|
1 | MAERTENS Freddy | 65 |
2 | DE WOLF Fons | 75 |
3 | THALER Klaus-Peter | 60 |
6 | KELLY Sean | 77 |
17 | BERNAUDEAU Jean-René | 64 |
24 | OVION Régis | 64 |
28 | BOURREAU Bernard | 63 |
29 | FERNÁNDEZ Juan | 68 |
36 | HINAULT Bernard | 62 |
41 | HOSTE Frank | 76 |
42 | VILAMAJO Jaime | 70 |
44 | DIDIER Lucien | 67 |
48 | ZOETEMELK Joop | 68 |
57 | NILSSON Sven-Åke | 63 |
59 | DUCLOS-LASSALLE Gilbert | 73 |
61 | SCHEPERS Eddy | 60 |
64 | KUIPER Hennie | 69 |
82 | MARTIN Raymond | 62 |
85 | WINNEN Peter | 60 |
89 | VAN IMPE Lucien | 59 |
91 | DE ROOIJ Theo | 69 |
97 | VAN DEN HOEK Aad | 77 |
113 | MARTINEZ Paulino | 80 |