Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 75
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Winnen
1
60 kgBernaudeau
3
64 kgNilsson
5
63 kgHinault
6
62 kgZoetemelk
8
68 kgMartin
10
62 kgKuiper
13
69 kgKelly
15
77 kgDidier
16
67 kgde Rooij
18
69 kgBittinger
26
69 kgvan Vliet
39
65 kgMadiot
54
68 kgDe Wolf
58
75 kgDemierre
60
70 kgDuclos-Lassalle
82
73 kgThaler
107
60 kgGlaus
113
67 kgvan der Poel
126
70 kg
1
60 kgBernaudeau
3
64 kgNilsson
5
63 kgHinault
6
62 kgZoetemelk
8
68 kgMartin
10
62 kgKuiper
13
69 kgKelly
15
77 kgDidier
16
67 kgde Rooij
18
69 kgBittinger
26
69 kgvan Vliet
39
65 kgMadiot
54
68 kgDe Wolf
58
75 kgDemierre
60
70 kgDuclos-Lassalle
82
73 kgThaler
107
60 kgGlaus
113
67 kgvan der Poel
126
70 kg
Weight (KG) →
Result →
77
60
1
126
# | Rider | Weight (KG) |
---|---|---|
1 | WINNEN Peter | 60 |
3 | BERNAUDEAU Jean-René | 64 |
5 | NILSSON Sven-Åke | 63 |
6 | HINAULT Bernard | 62 |
8 | ZOETEMELK Joop | 68 |
10 | MARTIN Raymond | 62 |
13 | KUIPER Hennie | 69 |
15 | KELLY Sean | 77 |
16 | DIDIER Lucien | 67 |
18 | DE ROOIJ Theo | 69 |
26 | BITTINGER René | 69 |
39 | VAN VLIET Leo | 65 |
54 | MADIOT Marc | 68 |
58 | DE WOLF Fons | 75 |
60 | DEMIERRE Serge | 70 |
82 | DUCLOS-LASSALLE Gilbert | 73 |
107 | THALER Klaus-Peter | 60 |
113 | GLAUS Gilbert | 67 |
126 | VAN DER POEL Adrie | 70 |