Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 27
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Kelly
2
77 kgvan Vliet
3
65 kgDe Wolf
8
75 kgvan der Poel
9
70 kgThaler
20
60 kgGlaus
25
67 kgBernaudeau
29
64 kgHinault
30
62 kgWinnen
42
60 kgZoetemelk
53
68 kgNilsson
59
63 kgDemierre
63
70 kgDidier
67
67 kgMartin
74
62 kgMadiot
77
68 kgBittinger
82
69 kgKuiper
94
69 kgde Rooij
99
69 kgDuclos-Lassalle
115
73 kg
2
77 kgvan Vliet
3
65 kgDe Wolf
8
75 kgvan der Poel
9
70 kgThaler
20
60 kgGlaus
25
67 kgBernaudeau
29
64 kgHinault
30
62 kgWinnen
42
60 kgZoetemelk
53
68 kgNilsson
59
63 kgDemierre
63
70 kgDidier
67
67 kgMartin
74
62 kgMadiot
77
68 kgBittinger
82
69 kgKuiper
94
69 kgde Rooij
99
69 kgDuclos-Lassalle
115
73 kg
Weight (KG) →
Result →
77
60
2
115
# | Rider | Weight (KG) |
---|---|---|
2 | KELLY Sean | 77 |
3 | VAN VLIET Leo | 65 |
8 | DE WOLF Fons | 75 |
9 | VAN DER POEL Adrie | 70 |
20 | THALER Klaus-Peter | 60 |
25 | GLAUS Gilbert | 67 |
29 | BERNAUDEAU Jean-René | 64 |
30 | HINAULT Bernard | 62 |
42 | WINNEN Peter | 60 |
53 | ZOETEMELK Joop | 68 |
59 | NILSSON Sven-Åke | 63 |
63 | DEMIERRE Serge | 70 |
67 | DIDIER Lucien | 67 |
74 | MARTIN Raymond | 62 |
77 | MADIOT Marc | 68 |
82 | BITTINGER René | 69 |
94 | KUIPER Hennie | 69 |
99 | DE ROOIJ Theo | 69 |
115 | DUCLOS-LASSALLE Gilbert | 73 |