Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 123
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Hinault
1
62 kgZoetemelk
6
68 kgKelly
8
77 kgDemierre
9
70 kgWinnen
12
60 kgDe Wolf
17
75 kgDuclos-Lassalle
20
73 kgBernaudeau
21
64 kgMartin
23
62 kgde Rooij
25
69 kgKuiper
34
69 kgNilsson
37
63 kgDidier
50
67 kgBittinger
59
69 kgvan der Poel
64
70 kgvan Vliet
65
65 kgMadiot
75
68 kgGlaus
89
67 kgThaler
94
60 kg
1
62 kgZoetemelk
6
68 kgKelly
8
77 kgDemierre
9
70 kgWinnen
12
60 kgDe Wolf
17
75 kgDuclos-Lassalle
20
73 kgBernaudeau
21
64 kgMartin
23
62 kgde Rooij
25
69 kgKuiper
34
69 kgNilsson
37
63 kgDidier
50
67 kgBittinger
59
69 kgvan der Poel
64
70 kgvan Vliet
65
65 kgMadiot
75
68 kgGlaus
89
67 kgThaler
94
60 kg
Weight (KG) →
Result →
77
60
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
6 | ZOETEMELK Joop | 68 |
8 | KELLY Sean | 77 |
9 | DEMIERRE Serge | 70 |
12 | WINNEN Peter | 60 |
17 | DE WOLF Fons | 75 |
20 | DUCLOS-LASSALLE Gilbert | 73 |
21 | BERNAUDEAU Jean-René | 64 |
23 | MARTIN Raymond | 62 |
25 | DE ROOIJ Theo | 69 |
34 | KUIPER Hennie | 69 |
37 | NILSSON Sven-Åke | 63 |
50 | DIDIER Lucien | 67 |
59 | BITTINGER René | 69 |
64 | VAN DER POEL Adrie | 70 |
65 | VAN VLIET Leo | 65 |
75 | MADIOT Marc | 68 |
89 | GLAUS Gilbert | 67 |
94 | THALER Klaus-Peter | 60 |