Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 74
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Kelly
2
77 kgKuiper
6
69 kgGlaus
8
67 kgvan Vliet
9
65 kgDuclos-Lassalle
13
73 kgBernaudeau
20
64 kgThaler
33
60 kgWinnen
46
60 kgDidier
55
67 kgZoetemelk
61
68 kgBittinger
67
69 kgDemierre
69
70 kgHinault
70
62 kgNilsson
71
63 kgMadiot
84
68 kgvan der Poel
85
70 kgMartin
88
62 kgDe Wolf
96
75 kgde Rooij
108
69 kg
2
77 kgKuiper
6
69 kgGlaus
8
67 kgvan Vliet
9
65 kgDuclos-Lassalle
13
73 kgBernaudeau
20
64 kgThaler
33
60 kgWinnen
46
60 kgDidier
55
67 kgZoetemelk
61
68 kgBittinger
67
69 kgDemierre
69
70 kgHinault
70
62 kgNilsson
71
63 kgMadiot
84
68 kgvan der Poel
85
70 kgMartin
88
62 kgDe Wolf
96
75 kgde Rooij
108
69 kg
Weight (KG) →
Result →
77
60
2
108
# | Rider | Weight (KG) |
---|---|---|
2 | KELLY Sean | 77 |
6 | KUIPER Hennie | 69 |
8 | GLAUS Gilbert | 67 |
9 | VAN VLIET Leo | 65 |
13 | DUCLOS-LASSALLE Gilbert | 73 |
20 | BERNAUDEAU Jean-René | 64 |
33 | THALER Klaus-Peter | 60 |
46 | WINNEN Peter | 60 |
55 | DIDIER Lucien | 67 |
61 | ZOETEMELK Joop | 68 |
67 | BITTINGER René | 69 |
69 | DEMIERRE Serge | 70 |
70 | HINAULT Bernard | 62 |
71 | NILSSON Sven-Åke | 63 |
84 | MADIOT Marc | 68 |
85 | VAN DER POEL Adrie | 70 |
88 | MARTIN Raymond | 62 |
96 | DE WOLF Fons | 75 |
108 | DE ROOIJ Theo | 69 |