Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.9 * weight + 246
This means that on average for every extra kilogram weight a rider loses -2.9 positions in the result.
Hinault
1
62 kgvan der Poel
2
70 kgDe Wolf
5
75 kgKelly
11
77 kgGlaus
23
67 kgvan Vliet
26
65 kgDemierre
32
70 kgDuclos-Lassalle
35
73 kgBernaudeau
50
64 kgThaler
56
60 kgKuiper
61
69 kgBittinger
70
69 kgDidier
74
67 kgMadiot
76
68 kgWinnen
77
60 kgde Rooij
79
69 kgMartin
92
62 kgNilsson
97
63 kgZoetemelk
105
68 kg
1
62 kgvan der Poel
2
70 kgDe Wolf
5
75 kgKelly
11
77 kgGlaus
23
67 kgvan Vliet
26
65 kgDemierre
32
70 kgDuclos-Lassalle
35
73 kgBernaudeau
50
64 kgThaler
56
60 kgKuiper
61
69 kgBittinger
70
69 kgDidier
74
67 kgMadiot
76
68 kgWinnen
77
60 kgde Rooij
79
69 kgMartin
92
62 kgNilsson
97
63 kgZoetemelk
105
68 kg
Weight (KG) →
Result →
77
60
1
105
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
2 | VAN DER POEL Adrie | 70 |
5 | DE WOLF Fons | 75 |
11 | KELLY Sean | 77 |
23 | GLAUS Gilbert | 67 |
26 | VAN VLIET Leo | 65 |
32 | DEMIERRE Serge | 70 |
35 | DUCLOS-LASSALLE Gilbert | 73 |
50 | BERNAUDEAU Jean-René | 64 |
56 | THALER Klaus-Peter | 60 |
61 | KUIPER Hennie | 69 |
70 | BITTINGER René | 69 |
74 | DIDIER Lucien | 67 |
76 | MADIOT Marc | 68 |
77 | WINNEN Peter | 60 |
79 | DE ROOIJ Theo | 69 |
92 | MARTIN Raymond | 62 |
97 | NILSSON Sven-Åke | 63 |
105 | ZOETEMELK Joop | 68 |