Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Fignon
1
67 kgWinnen
3
60 kgVan Impe
4
59 kgBernaudeau
6
64 kgKelly
7
77 kgMadiot
8
68 kgRoche
13
74 kgDelgado
15
64 kgZoetemelk
23
68 kgde Rooij
29
69 kgvan der Poel
37
70 kgVandi
39
64 kgMartin
43
62 kgRíos
44
63 kgJourdan
45
64 kgChevallier
47
69 kgDidier
52
67 kgBourreau
53
63 kgDuclos-Lassalle
59
73 kgDemierre
71
70 kgGlaus
85
67 kg
1
67 kgWinnen
3
60 kgVan Impe
4
59 kgBernaudeau
6
64 kgKelly
7
77 kgMadiot
8
68 kgRoche
13
74 kgDelgado
15
64 kgZoetemelk
23
68 kgde Rooij
29
69 kgvan der Poel
37
70 kgVandi
39
64 kgMartin
43
62 kgRíos
44
63 kgJourdan
45
64 kgChevallier
47
69 kgDidier
52
67 kgBourreau
53
63 kgDuclos-Lassalle
59
73 kgDemierre
71
70 kgGlaus
85
67 kg
Weight (KG) →
Result →
77
59
1
85
# | Rider | Weight (KG) |
---|---|---|
1 | FIGNON Laurent | 67 |
3 | WINNEN Peter | 60 |
4 | VAN IMPE Lucien | 59 |
6 | BERNAUDEAU Jean-René | 64 |
7 | KELLY Sean | 77 |
8 | MADIOT Marc | 68 |
13 | ROCHE Stephen | 74 |
15 | DELGADO Pedro | 64 |
23 | ZOETEMELK Joop | 68 |
29 | DE ROOIJ Theo | 69 |
37 | VAN DER POEL Adrie | 70 |
39 | VANDI Alfio | 64 |
43 | MARTIN Raymond | 62 |
44 | RÍOS Abelardo Antonio | 63 |
45 | JOURDAN Christian | 64 |
47 | CHEVALLIER Philippe | 69 |
52 | DIDIER Lucien | 67 |
53 | BOURREAU Bernard | 63 |
59 | DUCLOS-LASSALLE Gilbert | 73 |
71 | DEMIERRE Serge | 70 |
85 | GLAUS Gilbert | 67 |