Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 141
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Jourdan
2
64 kgvan der Poel
6
70 kgDemierre
7
70 kgDelgado
10
64 kgKelly
14
77 kgDe Wilde
16
70 kgWampers
19
82 kgVandi
28
64 kgFignon
31
67 kgDidier
32
67 kgRoche
35
74 kgBernaudeau
44
64 kgMadiot
47
68 kgWinnen
53
60 kgZoetemelk
55
68 kgVan Impe
56
59 kgMartin
69
62 kgGlaus
71
67 kgBourreau
75
63 kgde Rooij
93
69 kgChevallier
98
69 kgDuclos-Lassalle
99
73 kgRíos
105
63 kg
2
64 kgvan der Poel
6
70 kgDemierre
7
70 kgDelgado
10
64 kgKelly
14
77 kgDe Wilde
16
70 kgWampers
19
82 kgVandi
28
64 kgFignon
31
67 kgDidier
32
67 kgRoche
35
74 kgBernaudeau
44
64 kgMadiot
47
68 kgWinnen
53
60 kgZoetemelk
55
68 kgVan Impe
56
59 kgMartin
69
62 kgGlaus
71
67 kgBourreau
75
63 kgde Rooij
93
69 kgChevallier
98
69 kgDuclos-Lassalle
99
73 kgRíos
105
63 kg
Weight (KG) →
Result →
82
59
2
105
# | Rider | Weight (KG) |
---|---|---|
2 | JOURDAN Christian | 64 |
6 | VAN DER POEL Adrie | 70 |
7 | DEMIERRE Serge | 70 |
10 | DELGADO Pedro | 64 |
14 | KELLY Sean | 77 |
16 | DE WILDE Etienne | 70 |
19 | WAMPERS Jean-Marie | 82 |
28 | VANDI Alfio | 64 |
31 | FIGNON Laurent | 67 |
32 | DIDIER Lucien | 67 |
35 | ROCHE Stephen | 74 |
44 | BERNAUDEAU Jean-René | 64 |
47 | MADIOT Marc | 68 |
53 | WINNEN Peter | 60 |
55 | ZOETEMELK Joop | 68 |
56 | VAN IMPE Lucien | 59 |
69 | MARTIN Raymond | 62 |
71 | GLAUS Gilbert | 67 |
75 | BOURREAU Bernard | 63 |
93 | DE ROOIJ Theo | 69 |
98 | CHEVALLIER Philippe | 69 |
99 | DUCLOS-LASSALLE Gilbert | 73 |
105 | RÍOS Abelardo Antonio | 63 |