Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 78
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
van der Poel
6
70 kgDidier
7
67 kgKelly
11
77 kgFignon
16
67 kgWinnen
17
60 kgRoche
20
74 kgBernaudeau
23
64 kgde Rooij
24
69 kgJourdan
29
64 kgDelgado
31
64 kgMadiot
32
68 kgWampers
36
82 kgMartin
41
62 kgVan Impe
44
59 kgZoetemelk
57
68 kgDuclos-Lassalle
72
73 kgBourreau
73
63 kgRíos
87
63 kgVandi
88
64 kgChevallier
90
69 kgDemierre
94
70 kgGlaus
95
67 kgDe Wilde
108
70 kg
6
70 kgDidier
7
67 kgKelly
11
77 kgFignon
16
67 kgWinnen
17
60 kgRoche
20
74 kgBernaudeau
23
64 kgde Rooij
24
69 kgJourdan
29
64 kgDelgado
31
64 kgMadiot
32
68 kgWampers
36
82 kgMartin
41
62 kgVan Impe
44
59 kgZoetemelk
57
68 kgDuclos-Lassalle
72
73 kgBourreau
73
63 kgRíos
87
63 kgVandi
88
64 kgChevallier
90
69 kgDemierre
94
70 kgGlaus
95
67 kgDe Wilde
108
70 kg
Weight (KG) →
Result →
82
59
6
108
# | Rider | Weight (KG) |
---|---|---|
6 | VAN DER POEL Adrie | 70 |
7 | DIDIER Lucien | 67 |
11 | KELLY Sean | 77 |
16 | FIGNON Laurent | 67 |
17 | WINNEN Peter | 60 |
20 | ROCHE Stephen | 74 |
23 | BERNAUDEAU Jean-René | 64 |
24 | DE ROOIJ Theo | 69 |
29 | JOURDAN Christian | 64 |
31 | DELGADO Pedro | 64 |
32 | MADIOT Marc | 68 |
36 | WAMPERS Jean-Marie | 82 |
41 | MARTIN Raymond | 62 |
44 | VAN IMPE Lucien | 59 |
57 | ZOETEMELK Joop | 68 |
72 | DUCLOS-LASSALLE Gilbert | 73 |
73 | BOURREAU Bernard | 63 |
87 | RÍOS Abelardo Antonio | 63 |
88 | VANDI Alfio | 64 |
90 | CHEVALLIER Philippe | 69 |
94 | DEMIERRE Serge | 70 |
95 | GLAUS Gilbert | 67 |
108 | DE WILDE Etienne | 70 |