Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
de Rooij
2
69 kgvan der Poel
9
70 kgGlaus
15
67 kgKelly
17
77 kgFignon
19
67 kgChevallier
27
69 kgJourdan
28
64 kgDelgado
34
64 kgBernaudeau
41
64 kgDemierre
45
70 kgWinnen
46
60 kgVan Impe
48
59 kgZoetemelk
50
68 kgMadiot
51
68 kgMartin
53
62 kgDuclos-Lassalle
55
73 kgRíos
60
63 kgDidier
63
67 kgRoche
65
74 kgBourreau
86
63 kgVandi
88
64 kgWampers
98
82 kgDe Wilde
102
70 kg
2
69 kgvan der Poel
9
70 kgGlaus
15
67 kgKelly
17
77 kgFignon
19
67 kgChevallier
27
69 kgJourdan
28
64 kgDelgado
34
64 kgBernaudeau
41
64 kgDemierre
45
70 kgWinnen
46
60 kgVan Impe
48
59 kgZoetemelk
50
68 kgMadiot
51
68 kgMartin
53
62 kgDuclos-Lassalle
55
73 kgRíos
60
63 kgDidier
63
67 kgRoche
65
74 kgBourreau
86
63 kgVandi
88
64 kgWampers
98
82 kgDe Wilde
102
70 kg
Weight (KG) →
Result →
82
59
2
102
# | Rider | Weight (KG) |
---|---|---|
2 | DE ROOIJ Theo | 69 |
9 | VAN DER POEL Adrie | 70 |
15 | GLAUS Gilbert | 67 |
17 | KELLY Sean | 77 |
19 | FIGNON Laurent | 67 |
27 | CHEVALLIER Philippe | 69 |
28 | JOURDAN Christian | 64 |
34 | DELGADO Pedro | 64 |
41 | BERNAUDEAU Jean-René | 64 |
45 | DEMIERRE Serge | 70 |
46 | WINNEN Peter | 60 |
48 | VAN IMPE Lucien | 59 |
50 | ZOETEMELK Joop | 68 |
51 | MADIOT Marc | 68 |
53 | MARTIN Raymond | 62 |
55 | DUCLOS-LASSALLE Gilbert | 73 |
60 | RÍOS Abelardo Antonio | 63 |
63 | DIDIER Lucien | 67 |
65 | ROCHE Stephen | 74 |
86 | BOURREAU Bernard | 63 |
88 | VANDI Alfio | 64 |
98 | WAMPERS Jean-Marie | 82 |
102 | DE WILDE Etienne | 70 |