Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 67
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Delgado
2
64 kgVan Impe
4
59 kgKelly
7
77 kgWinnen
8
60 kgFignon
10
67 kgRoche
11
74 kgZoetemelk
13
68 kgMadiot
15
68 kgMartin
22
62 kgRíos
29
63 kgDuclos-Lassalle
39
73 kgvan der Poel
44
70 kgBernaudeau
49
64 kgDidier
50
67 kgJourdan
57
64 kgVandi
65
64 kgChevallier
66
69 kgBourreau
74
63 kgDemierre
84
70 kgWampers
92
82 kgde Rooij
94
69 kgDe Wilde
98
70 kgGlaus
103
67 kg
2
64 kgVan Impe
4
59 kgKelly
7
77 kgWinnen
8
60 kgFignon
10
67 kgRoche
11
74 kgZoetemelk
13
68 kgMadiot
15
68 kgMartin
22
62 kgRíos
29
63 kgDuclos-Lassalle
39
73 kgvan der Poel
44
70 kgBernaudeau
49
64 kgDidier
50
67 kgJourdan
57
64 kgVandi
65
64 kgChevallier
66
69 kgBourreau
74
63 kgDemierre
84
70 kgWampers
92
82 kgde Rooij
94
69 kgDe Wilde
98
70 kgGlaus
103
67 kg
Weight (KG) →
Result →
82
59
2
103
# | Rider | Weight (KG) |
---|---|---|
2 | DELGADO Pedro | 64 |
4 | VAN IMPE Lucien | 59 |
7 | KELLY Sean | 77 |
8 | WINNEN Peter | 60 |
10 | FIGNON Laurent | 67 |
11 | ROCHE Stephen | 74 |
13 | ZOETEMELK Joop | 68 |
15 | MADIOT Marc | 68 |
22 | MARTIN Raymond | 62 |
29 | RÍOS Abelardo Antonio | 63 |
39 | DUCLOS-LASSALLE Gilbert | 73 |
44 | VAN DER POEL Adrie | 70 |
49 | BERNAUDEAU Jean-René | 64 |
50 | DIDIER Lucien | 67 |
57 | JOURDAN Christian | 64 |
65 | VANDI Alfio | 64 |
66 | CHEVALLIER Philippe | 69 |
74 | BOURREAU Bernard | 63 |
84 | DEMIERRE Serge | 70 |
92 | WAMPERS Jean-Marie | 82 |
94 | DE ROOIJ Theo | 69 |
98 | DE WILDE Etienne | 70 |
103 | GLAUS Gilbert | 67 |