Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 107
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Jourdan
8
64 kgKelly
11
77 kgvan der Poel
13
70 kgFignon
15
67 kgWinnen
24
60 kgRoche
25
74 kgMadiot
26
68 kgRíos
28
63 kgBernaudeau
31
64 kgDuclos-Lassalle
33
73 kgWampers
39
82 kgVan Impe
46
59 kgDelgado
48
64 kgZoetemelk
49
68 kgVandi
58
64 kgMartin
75
62 kgChevallier
79
69 kgDemierre
91
70 kgde Rooij
92
69 kgDidier
94
67 kgBourreau
98
63 kgGlaus
101
67 kg
8
64 kgKelly
11
77 kgvan der Poel
13
70 kgFignon
15
67 kgWinnen
24
60 kgRoche
25
74 kgMadiot
26
68 kgRíos
28
63 kgBernaudeau
31
64 kgDuclos-Lassalle
33
73 kgWampers
39
82 kgVan Impe
46
59 kgDelgado
48
64 kgZoetemelk
49
68 kgVandi
58
64 kgMartin
75
62 kgChevallier
79
69 kgDemierre
91
70 kgde Rooij
92
69 kgDidier
94
67 kgBourreau
98
63 kgGlaus
101
67 kg
Weight (KG) →
Result →
82
59
8
101
# | Rider | Weight (KG) |
---|---|---|
8 | JOURDAN Christian | 64 |
11 | KELLY Sean | 77 |
13 | VAN DER POEL Adrie | 70 |
15 | FIGNON Laurent | 67 |
24 | WINNEN Peter | 60 |
25 | ROCHE Stephen | 74 |
26 | MADIOT Marc | 68 |
28 | RÍOS Abelardo Antonio | 63 |
31 | BERNAUDEAU Jean-René | 64 |
33 | DUCLOS-LASSALLE Gilbert | 73 |
39 | WAMPERS Jean-Marie | 82 |
46 | VAN IMPE Lucien | 59 |
48 | DELGADO Pedro | 64 |
49 | ZOETEMELK Joop | 68 |
58 | VANDI Alfio | 64 |
75 | MARTIN Raymond | 62 |
79 | CHEVALLIER Philippe | 69 |
91 | DEMIERRE Serge | 70 |
92 | DE ROOIJ Theo | 69 |
94 | DIDIER Lucien | 67 |
98 | BOURREAU Bernard | 63 |
101 | GLAUS Gilbert | 67 |