Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.6 * weight - 139
This means that on average for every extra kilogram weight a rider loses 2.6 positions in the result.
Winnen
1
60 kgBernaudeau
2
64 kgFignon
5
67 kgVan Impe
6
59 kgDelgado
7
64 kgMartin
8
62 kgMadiot
11
68 kgKelly
16
77 kgVandi
17
64 kgRíos
28
63 kgChevallier
33
69 kgDemierre
39
70 kgde Rooij
40
69 kgZoetemelk
45
68 kgRoche
46
74 kgJourdan
48
64 kgBourreau
57
63 kgDidier
82
67 kgvan der Poel
84
70 kgDuclos-Lassalle
86
73 kgGlaus
90
67 kg
1
60 kgBernaudeau
2
64 kgFignon
5
67 kgVan Impe
6
59 kgDelgado
7
64 kgMartin
8
62 kgMadiot
11
68 kgKelly
16
77 kgVandi
17
64 kgRíos
28
63 kgChevallier
33
69 kgDemierre
39
70 kgde Rooij
40
69 kgZoetemelk
45
68 kgRoche
46
74 kgJourdan
48
64 kgBourreau
57
63 kgDidier
82
67 kgvan der Poel
84
70 kgDuclos-Lassalle
86
73 kgGlaus
90
67 kg
Weight (KG) →
Result →
77
59
1
90
# | Rider | Weight (KG) |
---|---|---|
1 | WINNEN Peter | 60 |
2 | BERNAUDEAU Jean-René | 64 |
5 | FIGNON Laurent | 67 |
6 | VAN IMPE Lucien | 59 |
7 | DELGADO Pedro | 64 |
8 | MARTIN Raymond | 62 |
11 | MADIOT Marc | 68 |
16 | KELLY Sean | 77 |
17 | VANDI Alfio | 64 |
28 | RÍOS Abelardo Antonio | 63 |
33 | CHEVALLIER Philippe | 69 |
39 | DEMIERRE Serge | 70 |
40 | DE ROOIJ Theo | 69 |
45 | ZOETEMELK Joop | 68 |
46 | ROCHE Stephen | 74 |
48 | JOURDAN Christian | 64 |
57 | BOURREAU Bernard | 63 |
82 | DIDIER Lucien | 67 |
84 | VAN DER POEL Adrie | 70 |
86 | DUCLOS-LASSALLE Gilbert | 73 |
90 | GLAUS Gilbert | 67 |