Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 86
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Van Impe
4
59 kgRoche
6
74 kgFignon
8
67 kgWinnen
9
60 kgBernaudeau
10
64 kgMadiot
15
68 kgKelly
16
77 kgde Rooij
22
69 kgZoetemelk
24
68 kgvan der Poel
25
70 kgRíos
28
63 kgDuclos-Lassalle
32
73 kgDelgado
39
64 kgBourreau
40
63 kgChevallier
49
69 kgVandi
59
64 kgDemierre
63
70 kgJourdan
71
64 kgGlaus
75
67 kgDidier
78
67 kgMartin
86
62 kg
4
59 kgRoche
6
74 kgFignon
8
67 kgWinnen
9
60 kgBernaudeau
10
64 kgMadiot
15
68 kgKelly
16
77 kgde Rooij
22
69 kgZoetemelk
24
68 kgvan der Poel
25
70 kgRíos
28
63 kgDuclos-Lassalle
32
73 kgDelgado
39
64 kgBourreau
40
63 kgChevallier
49
69 kgVandi
59
64 kgDemierre
63
70 kgJourdan
71
64 kgGlaus
75
67 kgDidier
78
67 kgMartin
86
62 kg
Weight (KG) →
Result →
77
59
4
86
# | Rider | Weight (KG) |
---|---|---|
4 | VAN IMPE Lucien | 59 |
6 | ROCHE Stephen | 74 |
8 | FIGNON Laurent | 67 |
9 | WINNEN Peter | 60 |
10 | BERNAUDEAU Jean-René | 64 |
15 | MADIOT Marc | 68 |
16 | KELLY Sean | 77 |
22 | DE ROOIJ Theo | 69 |
24 | ZOETEMELK Joop | 68 |
25 | VAN DER POEL Adrie | 70 |
28 | RÍOS Abelardo Antonio | 63 |
32 | DUCLOS-LASSALLE Gilbert | 73 |
39 | DELGADO Pedro | 64 |
40 | BOURREAU Bernard | 63 |
49 | CHEVALLIER Philippe | 69 |
59 | VANDI Alfio | 64 |
63 | DEMIERRE Serge | 70 |
71 | JOURDAN Christian | 64 |
75 | GLAUS Gilbert | 67 |
78 | DIDIER Lucien | 67 |
86 | MARTIN Raymond | 62 |