Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Van Impe
1
59 kgRoche
2
74 kgWinnen
3
60 kgDelgado
7
64 kgFignon
10
67 kgKelly
11
77 kgBernaudeau
35
64 kgMadiot
36
68 kgvan der Poel
37
70 kgZoetemelk
39
68 kgde Rooij
42
69 kgJourdan
44
64 kgDuclos-Lassalle
47
73 kgDidier
49
67 kgRíos
53
63 kgChevallier
55
69 kgVandi
62
64 kgBourreau
67
63 kgMartin
73
62 kgDemierre
75
70 kgGlaus
89
67 kg
1
59 kgRoche
2
74 kgWinnen
3
60 kgDelgado
7
64 kgFignon
10
67 kgKelly
11
77 kgBernaudeau
35
64 kgMadiot
36
68 kgvan der Poel
37
70 kgZoetemelk
39
68 kgde Rooij
42
69 kgJourdan
44
64 kgDuclos-Lassalle
47
73 kgDidier
49
67 kgRíos
53
63 kgChevallier
55
69 kgVandi
62
64 kgBourreau
67
63 kgMartin
73
62 kgDemierre
75
70 kgGlaus
89
67 kg
Weight (KG) →
Result →
77
59
1
89
# | Rider | Weight (KG) |
---|---|---|
1 | VAN IMPE Lucien | 59 |
2 | ROCHE Stephen | 74 |
3 | WINNEN Peter | 60 |
7 | DELGADO Pedro | 64 |
10 | FIGNON Laurent | 67 |
11 | KELLY Sean | 77 |
35 | BERNAUDEAU Jean-René | 64 |
36 | MADIOT Marc | 68 |
37 | VAN DER POEL Adrie | 70 |
39 | ZOETEMELK Joop | 68 |
42 | DE ROOIJ Theo | 69 |
44 | JOURDAN Christian | 64 |
47 | DUCLOS-LASSALLE Gilbert | 73 |
49 | DIDIER Lucien | 67 |
53 | RÍOS Abelardo Antonio | 63 |
55 | CHEVALLIER Philippe | 69 |
62 | VANDI Alfio | 64 |
67 | BOURREAU Bernard | 63 |
73 | MARTIN Raymond | 62 |
75 | DEMIERRE Serge | 70 |
89 | GLAUS Gilbert | 67 |