Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Kelly
3
77 kgGlaus
4
67 kgvan der Poel
5
70 kgFignon
9
67 kgRoche
11
74 kgWinnen
13
60 kgVan Impe
14
59 kgBernaudeau
16
64 kgde Rooij
17
69 kgMadiot
23
68 kgDelgado
26
64 kgJourdan
37
64 kgVandi
40
64 kgMartin
43
62 kgZoetemelk
47
68 kgBourreau
58
63 kgRíos
63
63 kgDuclos-Lassalle
74
73 kgDidier
77
67 kgChevallier
78
69 kgDemierre
82
70 kg
3
77 kgGlaus
4
67 kgvan der Poel
5
70 kgFignon
9
67 kgRoche
11
74 kgWinnen
13
60 kgVan Impe
14
59 kgBernaudeau
16
64 kgde Rooij
17
69 kgMadiot
23
68 kgDelgado
26
64 kgJourdan
37
64 kgVandi
40
64 kgMartin
43
62 kgZoetemelk
47
68 kgBourreau
58
63 kgRíos
63
63 kgDuclos-Lassalle
74
73 kgDidier
77
67 kgChevallier
78
69 kgDemierre
82
70 kg
Weight (KG) →
Result →
77
59
3
82
# | Rider | Weight (KG) |
---|---|---|
3 | KELLY Sean | 77 |
4 | GLAUS Gilbert | 67 |
5 | VAN DER POEL Adrie | 70 |
9 | FIGNON Laurent | 67 |
11 | ROCHE Stephen | 74 |
13 | WINNEN Peter | 60 |
14 | VAN IMPE Lucien | 59 |
16 | BERNAUDEAU Jean-René | 64 |
17 | DE ROOIJ Theo | 69 |
23 | MADIOT Marc | 68 |
26 | DELGADO Pedro | 64 |
37 | JOURDAN Christian | 64 |
40 | VANDI Alfio | 64 |
43 | MARTIN Raymond | 62 |
47 | ZOETEMELK Joop | 68 |
58 | BOURREAU Bernard | 63 |
63 | RÍOS Abelardo Antonio | 63 |
74 | DUCLOS-LASSALLE Gilbert | 73 |
77 | DIDIER Lucien | 67 |
78 | CHEVALLIER Philippe | 69 |
82 | DEMIERRE Serge | 70 |