Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 87
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Fignon
1
67 kgRoche
3
74 kgVan Impe
4
59 kgWinnen
5
60 kgvan der Poel
8
70 kgKelly
10
77 kgDelgado
12
64 kgDemierre
13
70 kgZoetemelk
17
68 kgMartin
18
62 kgDuclos-Lassalle
21
73 kgMadiot
25
68 kgBernaudeau
29
64 kgJourdan
46
64 kgVandi
47
64 kgChevallier
49
69 kgRíos
62
63 kgde Rooij
66
69 kgGlaus
68
67 kgBourreau
70
63 kgDidier
73
67 kg
1
67 kgRoche
3
74 kgVan Impe
4
59 kgWinnen
5
60 kgvan der Poel
8
70 kgKelly
10
77 kgDelgado
12
64 kgDemierre
13
70 kgZoetemelk
17
68 kgMartin
18
62 kgDuclos-Lassalle
21
73 kgMadiot
25
68 kgBernaudeau
29
64 kgJourdan
46
64 kgVandi
47
64 kgChevallier
49
69 kgRíos
62
63 kgde Rooij
66
69 kgGlaus
68
67 kgBourreau
70
63 kgDidier
73
67 kg
Weight (KG) →
Result →
77
59
1
73
# | Rider | Weight (KG) |
---|---|---|
1 | FIGNON Laurent | 67 |
3 | ROCHE Stephen | 74 |
4 | VAN IMPE Lucien | 59 |
5 | WINNEN Peter | 60 |
8 | VAN DER POEL Adrie | 70 |
10 | KELLY Sean | 77 |
12 | DELGADO Pedro | 64 |
13 | DEMIERRE Serge | 70 |
17 | ZOETEMELK Joop | 68 |
18 | MARTIN Raymond | 62 |
21 | DUCLOS-LASSALLE Gilbert | 73 |
25 | MADIOT Marc | 68 |
29 | BERNAUDEAU Jean-René | 64 |
46 | JOURDAN Christian | 64 |
47 | VANDI Alfio | 64 |
49 | CHEVALLIER Philippe | 69 |
62 | RÍOS Abelardo Antonio | 63 |
66 | DE ROOIJ Theo | 69 |
68 | GLAUS Gilbert | 67 |
70 | BOURREAU Bernard | 63 |
73 | DIDIER Lucien | 67 |