Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 137
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Glaus
1
67 kgKelly
2
77 kgFignon
4
67 kgDelgado
22
64 kgDemierre
23
70 kgBourreau
24
63 kgZoetemelk
26
68 kgRoche
30
74 kgChevallier
34
69 kgde Rooij
35
69 kgWinnen
40
60 kgVandi
46
64 kgBernaudeau
48
64 kgVan Impe
49
59 kgDuclos-Lassalle
54
73 kgJourdan
55
64 kgMartin
58
62 kgvan der Poel
62
70 kgDidier
63
67 kgMadiot
69
68 kgRíos
70
63 kg
1
67 kgKelly
2
77 kgFignon
4
67 kgDelgado
22
64 kgDemierre
23
70 kgBourreau
24
63 kgZoetemelk
26
68 kgRoche
30
74 kgChevallier
34
69 kgde Rooij
35
69 kgWinnen
40
60 kgVandi
46
64 kgBernaudeau
48
64 kgVan Impe
49
59 kgDuclos-Lassalle
54
73 kgJourdan
55
64 kgMartin
58
62 kgvan der Poel
62
70 kgDidier
63
67 kgMadiot
69
68 kgRíos
70
63 kg
Weight (KG) →
Result →
77
59
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | GLAUS Gilbert | 67 |
2 | KELLY Sean | 77 |
4 | FIGNON Laurent | 67 |
22 | DELGADO Pedro | 64 |
23 | DEMIERRE Serge | 70 |
24 | BOURREAU Bernard | 63 |
26 | ZOETEMELK Joop | 68 |
30 | ROCHE Stephen | 74 |
34 | CHEVALLIER Philippe | 69 |
35 | DE ROOIJ Theo | 69 |
40 | WINNEN Peter | 60 |
46 | VANDI Alfio | 64 |
48 | BERNAUDEAU Jean-René | 64 |
49 | VAN IMPE Lucien | 59 |
54 | DUCLOS-LASSALLE Gilbert | 73 |
55 | JOURDAN Christian | 64 |
58 | MARTIN Raymond | 62 |
62 | VAN DER POEL Adrie | 70 |
63 | DIDIER Lucien | 67 |
69 | MADIOT Marc | 68 |
70 | RÍOS Abelardo Antonio | 63 |