Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 55
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Fignon
1
67 kgHinault
2
62 kgLeMond
3
67 kgKelly
5
77 kgRoche
25
74 kgWinnen
26
60 kgHerrera
27
57 kgZoetemelk
30
68 kgMadiot
35
68 kgSergeant
48
76 kgKuiper
56
69 kgde Rooij
59
69 kgDidier
72
67 kgDe Wolf
74
75 kgvan Vliet
75
65 kgBourreau
86
63 kgVanderaerden
90
74 kgYates
91
74 kgHoste
100
76 kgGlaus
124
67 kg
1
67 kgHinault
2
62 kgLeMond
3
67 kgKelly
5
77 kgRoche
25
74 kgWinnen
26
60 kgHerrera
27
57 kgZoetemelk
30
68 kgMadiot
35
68 kgSergeant
48
76 kgKuiper
56
69 kgde Rooij
59
69 kgDidier
72
67 kgDe Wolf
74
75 kgvan Vliet
75
65 kgBourreau
86
63 kgVanderaerden
90
74 kgYates
91
74 kgHoste
100
76 kgGlaus
124
67 kg
Weight (KG) →
Result →
77
57
1
124
# | Rider | Weight (KG) |
---|---|---|
1 | FIGNON Laurent | 67 |
2 | HINAULT Bernard | 62 |
3 | LEMOND Greg | 67 |
5 | KELLY Sean | 77 |
25 | ROCHE Stephen | 74 |
26 | WINNEN Peter | 60 |
27 | HERRERA Luis Alberto | 57 |
30 | ZOETEMELK Joop | 68 |
35 | MADIOT Marc | 68 |
48 | SERGEANT Marc | 76 |
56 | KUIPER Hennie | 69 |
59 | DE ROOIJ Theo | 69 |
72 | DIDIER Lucien | 67 |
74 | DE WOLF Fons | 75 |
75 | VAN VLIET Leo | 65 |
86 | BOURREAU Bernard | 63 |
90 | VANDERAERDEN Eric | 74 |
91 | YATES Sean | 74 |
100 | HOSTE Frank | 76 |
124 | GLAUS Gilbert | 67 |