Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 56
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Fignon
1
67 kgHerrera
2
57 kgDelgado
3
64 kgHinault
4
62 kgKelly
7
77 kgZoetemelk
13
68 kgLeMond
17
67 kgWinnen
24
60 kgRoche
27
74 kgMadiot
34
68 kgSergeant
38
76 kgBernaudeau
61
64 kgYates
65
74 kgDe Wolf
76
75 kgKuiper
78
69 kgde Rooij
80
69 kgDidier
88
67 kgVanderaerden
94
74 kgvan Vliet
111
65 kgHoste
114
76 kgBourreau
116
63 kgGlaus
134
67 kg
1
67 kgHerrera
2
57 kgDelgado
3
64 kgHinault
4
62 kgKelly
7
77 kgZoetemelk
13
68 kgLeMond
17
67 kgWinnen
24
60 kgRoche
27
74 kgMadiot
34
68 kgSergeant
38
76 kgBernaudeau
61
64 kgYates
65
74 kgDe Wolf
76
75 kgKuiper
78
69 kgde Rooij
80
69 kgDidier
88
67 kgVanderaerden
94
74 kgvan Vliet
111
65 kgHoste
114
76 kgBourreau
116
63 kgGlaus
134
67 kg
Weight (KG) →
Result →
77
57
1
134
# | Rider | Weight (KG) |
---|---|---|
1 | FIGNON Laurent | 67 |
2 | HERRERA Luis Alberto | 57 |
3 | DELGADO Pedro | 64 |
4 | HINAULT Bernard | 62 |
7 | KELLY Sean | 77 |
13 | ZOETEMELK Joop | 68 |
17 | LEMOND Greg | 67 |
24 | WINNEN Peter | 60 |
27 | ROCHE Stephen | 74 |
34 | MADIOT Marc | 68 |
38 | SERGEANT Marc | 76 |
61 | BERNAUDEAU Jean-René | 64 |
65 | YATES Sean | 74 |
76 | DE WOLF Fons | 75 |
78 | KUIPER Hennie | 69 |
80 | DE ROOIJ Theo | 69 |
88 | DIDIER Lucien | 67 |
94 | VANDERAERDEN Eric | 74 |
111 | VAN VLIET Leo | 65 |
114 | HOSTE Frank | 76 |
116 | BOURREAU Bernard | 63 |
134 | GLAUS Gilbert | 67 |