Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 81
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Herrera
1
57 kgFignon
2
67 kgLeMond
6
67 kgHinault
7
62 kgRoche
12
74 kgZoetemelk
24
68 kgWinnen
34
60 kgKelly
38
77 kgDelgado
39
64 kgde Rooij
51
69 kgBernaudeau
55
64 kgSergeant
56
76 kgYates
60
74 kgMadiot
63
68 kgKuiper
70
69 kgDidier
74
67 kgDe Wolf
81
75 kgvan Vliet
82
65 kgHoste
89
76 kgBourreau
92
63 kgVanderaerden
102
74 kgGlaus
106
67 kg
1
57 kgFignon
2
67 kgLeMond
6
67 kgHinault
7
62 kgRoche
12
74 kgZoetemelk
24
68 kgWinnen
34
60 kgKelly
38
77 kgDelgado
39
64 kgde Rooij
51
69 kgBernaudeau
55
64 kgSergeant
56
76 kgYates
60
74 kgMadiot
63
68 kgKuiper
70
69 kgDidier
74
67 kgDe Wolf
81
75 kgvan Vliet
82
65 kgHoste
89
76 kgBourreau
92
63 kgVanderaerden
102
74 kgGlaus
106
67 kg
Weight (KG) →
Result →
77
57
1
106
# | Rider | Weight (KG) |
---|---|---|
1 | HERRERA Luis Alberto | 57 |
2 | FIGNON Laurent | 67 |
6 | LEMOND Greg | 67 |
7 | HINAULT Bernard | 62 |
12 | ROCHE Stephen | 74 |
24 | ZOETEMELK Joop | 68 |
34 | WINNEN Peter | 60 |
38 | KELLY Sean | 77 |
39 | DELGADO Pedro | 64 |
51 | DE ROOIJ Theo | 69 |
55 | BERNAUDEAU Jean-René | 64 |
56 | SERGEANT Marc | 76 |
60 | YATES Sean | 74 |
63 | MADIOT Marc | 68 |
70 | KUIPER Hennie | 69 |
74 | DIDIER Lucien | 67 |
81 | DE WOLF Fons | 75 |
82 | VAN VLIET Leo | 65 |
89 | HOSTE Frank | 76 |
92 | BOURREAU Bernard | 63 |
102 | VANDERAERDEN Eric | 74 |
106 | GLAUS Gilbert | 67 |