Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 21
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Fignon
1
67 kgLeMond
3
67 kgDelgado
4
64 kgKelly
7
77 kgHinault
10
62 kgRoche
20
74 kgHerrera
31
57 kgZoetemelk
33
68 kgMadiot
59
68 kgVanderaerden
65
74 kgde Rooij
69
69 kgWinnen
70
60 kgDe Wolf
73
75 kgBernaudeau
74
64 kgvan Vliet
76
65 kgBourreau
82
63 kgSergeant
92
76 kgHoste
93
76 kgYates
100
74 kgKuiper
103
69 kgDidier
106
67 kgGlaus
129
67 kg
1
67 kgLeMond
3
67 kgDelgado
4
64 kgKelly
7
77 kgHinault
10
62 kgRoche
20
74 kgHerrera
31
57 kgZoetemelk
33
68 kgMadiot
59
68 kgVanderaerden
65
74 kgde Rooij
69
69 kgWinnen
70
60 kgDe Wolf
73
75 kgBernaudeau
74
64 kgvan Vliet
76
65 kgBourreau
82
63 kgSergeant
92
76 kgHoste
93
76 kgYates
100
74 kgKuiper
103
69 kgDidier
106
67 kgGlaus
129
67 kg
Weight (KG) →
Result →
77
57
1
129
# | Rider | Weight (KG) |
---|---|---|
1 | FIGNON Laurent | 67 |
3 | LEMOND Greg | 67 |
4 | DELGADO Pedro | 64 |
7 | KELLY Sean | 77 |
10 | HINAULT Bernard | 62 |
20 | ROCHE Stephen | 74 |
31 | HERRERA Luis Alberto | 57 |
33 | ZOETEMELK Joop | 68 |
59 | MADIOT Marc | 68 |
65 | VANDERAERDEN Eric | 74 |
69 | DE ROOIJ Theo | 69 |
70 | WINNEN Peter | 60 |
73 | DE WOLF Fons | 75 |
74 | BERNAUDEAU Jean-René | 64 |
76 | VAN VLIET Leo | 65 |
82 | BOURREAU Bernard | 63 |
92 | SERGEANT Marc | 76 |
93 | HOSTE Frank | 76 |
100 | YATES Sean | 74 |
103 | KUIPER Hennie | 69 |
106 | DIDIER Lucien | 67 |
129 | GLAUS Gilbert | 67 |