Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.1 * weight - 153
This means that on average for every extra kilogram weight a rider loses 3.1 positions in the result.
Kelly
2
77 kgHinault
4
62 kgFignon
5
67 kgLeMond
8
67 kgWinnen
10
60 kgDelgado
28
64 kgHerrera
40
57 kgRoche
41
74 kgZoetemelk
42
68 kgMadiot
53
68 kgde Rooij
62
69 kgKuiper
63
69 kgvan Vliet
73
65 kgDidier
83
67 kgYates
93
74 kgBourreau
96
63 kgSergeant
107
76 kgHoste
108
76 kgDe Wolf
114
75 kgGlaus
115
67 kgVanderaerden
125
74 kg
2
77 kgHinault
4
62 kgFignon
5
67 kgLeMond
8
67 kgWinnen
10
60 kgDelgado
28
64 kgHerrera
40
57 kgRoche
41
74 kgZoetemelk
42
68 kgMadiot
53
68 kgde Rooij
62
69 kgKuiper
63
69 kgvan Vliet
73
65 kgDidier
83
67 kgYates
93
74 kgBourreau
96
63 kgSergeant
107
76 kgHoste
108
76 kgDe Wolf
114
75 kgGlaus
115
67 kgVanderaerden
125
74 kg
Weight (KG) →
Result →
77
57
2
125
# | Rider | Weight (KG) |
---|---|---|
2 | KELLY Sean | 77 |
4 | HINAULT Bernard | 62 |
5 | FIGNON Laurent | 67 |
8 | LEMOND Greg | 67 |
10 | WINNEN Peter | 60 |
28 | DELGADO Pedro | 64 |
40 | HERRERA Luis Alberto | 57 |
41 | ROCHE Stephen | 74 |
42 | ZOETEMELK Joop | 68 |
53 | MADIOT Marc | 68 |
62 | DE ROOIJ Theo | 69 |
63 | KUIPER Hennie | 69 |
73 | VAN VLIET Leo | 65 |
83 | DIDIER Lucien | 67 |
93 | YATES Sean | 74 |
96 | BOURREAU Bernard | 63 |
107 | SERGEANT Marc | 76 |
108 | HOSTE Frank | 76 |
114 | DE WOLF Fons | 75 |
115 | GLAUS Gilbert | 67 |
125 | VANDERAERDEN Eric | 74 |