Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 47
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Fignon
1
67 kgKelly
8
77 kgHinault
10
62 kgLeMond
12
67 kgSergeant
25
76 kgZoetemelk
33
68 kgRoche
51
74 kgWinnen
61
60 kgde Rooij
68
69 kgvan Vliet
69
65 kgMadiot
77
68 kgHerrera
83
57 kgDidier
84
67 kgYates
93
74 kgBourreau
99
63 kgDe Wolf
100
75 kgKuiper
101
69 kgHoste
102
76 kgVanderaerden
119
74 kgGlaus
120
67 kg
1
67 kgKelly
8
77 kgHinault
10
62 kgLeMond
12
67 kgSergeant
25
76 kgZoetemelk
33
68 kgRoche
51
74 kgWinnen
61
60 kgde Rooij
68
69 kgvan Vliet
69
65 kgMadiot
77
68 kgHerrera
83
57 kgDidier
84
67 kgYates
93
74 kgBourreau
99
63 kgDe Wolf
100
75 kgKuiper
101
69 kgHoste
102
76 kgVanderaerden
119
74 kgGlaus
120
67 kg
Weight (KG) →
Result →
77
57
1
120
# | Rider | Weight (KG) |
---|---|---|
1 | FIGNON Laurent | 67 |
8 | KELLY Sean | 77 |
10 | HINAULT Bernard | 62 |
12 | LEMOND Greg | 67 |
25 | SERGEANT Marc | 76 |
33 | ZOETEMELK Joop | 68 |
51 | ROCHE Stephen | 74 |
61 | WINNEN Peter | 60 |
68 | DE ROOIJ Theo | 69 |
69 | VAN VLIET Leo | 65 |
77 | MADIOT Marc | 68 |
83 | HERRERA Luis Alberto | 57 |
84 | DIDIER Lucien | 67 |
93 | YATES Sean | 74 |
99 | BOURREAU Bernard | 63 |
100 | DE WOLF Fons | 75 |
101 | KUIPER Hennie | 69 |
102 | HOSTE Frank | 76 |
119 | VANDERAERDEN Eric | 74 |
120 | GLAUS Gilbert | 67 |