Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.6 * weight + 222
This means that on average for every extra kilogram weight a rider loses -2.6 positions in the result.
Hoste
1
76 kgKelly
3
77 kgHinault
4
62 kgGlaus
6
67 kgLeMond
14
67 kgDe Wolf
16
75 kgSergeant
19
76 kgde Rooij
25
69 kgKuiper
33
69 kgYates
40
74 kgvan Vliet
41
65 kgFignon
46
67 kgMadiot
59
68 kgBourreau
65
63 kgDidier
67
67 kgRoche
76
74 kgWinnen
98
60 kgZoetemelk
100
68 kgVanderaerden
106
74 kgHerrera
107
57 kg
1
76 kgKelly
3
77 kgHinault
4
62 kgGlaus
6
67 kgLeMond
14
67 kgDe Wolf
16
75 kgSergeant
19
76 kgde Rooij
25
69 kgKuiper
33
69 kgYates
40
74 kgvan Vliet
41
65 kgFignon
46
67 kgMadiot
59
68 kgBourreau
65
63 kgDidier
67
67 kgRoche
76
74 kgWinnen
98
60 kgZoetemelk
100
68 kgVanderaerden
106
74 kgHerrera
107
57 kg
Weight (KG) →
Result →
77
57
1
107
# | Rider | Weight (KG) |
---|---|---|
1 | HOSTE Frank | 76 |
3 | KELLY Sean | 77 |
4 | HINAULT Bernard | 62 |
6 | GLAUS Gilbert | 67 |
14 | LEMOND Greg | 67 |
16 | DE WOLF Fons | 75 |
19 | SERGEANT Marc | 76 |
25 | DE ROOIJ Theo | 69 |
33 | KUIPER Hennie | 69 |
40 | YATES Sean | 74 |
41 | VAN VLIET Leo | 65 |
46 | FIGNON Laurent | 67 |
59 | MADIOT Marc | 68 |
65 | BOURREAU Bernard | 63 |
67 | DIDIER Lucien | 67 |
76 | ROCHE Stephen | 74 |
98 | WINNEN Peter | 60 |
100 | ZOETEMELK Joop | 68 |
106 | VANDERAERDEN Eric | 74 |
107 | HERRERA Luis Alberto | 57 |