Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 37
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Fignon
1
67 kgKelly
2
77 kgHinault
3
62 kgLeMond
4
67 kgSergeant
18
76 kgZoetemelk
21
68 kgMadiot
36
68 kgKuiper
43
69 kgWinnen
65
60 kgHoste
66
76 kgHerrera
67
57 kgDidier
89
67 kgYates
90
74 kgvan Vliet
94
65 kgBourreau
99
63 kgRoche
105
74 kgDe Wolf
108
75 kgde Rooij
110
69 kgVanderaerden
112
74 kgGlaus
121
67 kg
1
67 kgKelly
2
77 kgHinault
3
62 kgLeMond
4
67 kgSergeant
18
76 kgZoetemelk
21
68 kgMadiot
36
68 kgKuiper
43
69 kgWinnen
65
60 kgHoste
66
76 kgHerrera
67
57 kgDidier
89
67 kgYates
90
74 kgvan Vliet
94
65 kgBourreau
99
63 kgRoche
105
74 kgDe Wolf
108
75 kgde Rooij
110
69 kgVanderaerden
112
74 kgGlaus
121
67 kg
Weight (KG) →
Result →
77
57
1
121
# | Rider | Weight (KG) |
---|---|---|
1 | FIGNON Laurent | 67 |
2 | KELLY Sean | 77 |
3 | HINAULT Bernard | 62 |
4 | LEMOND Greg | 67 |
18 | SERGEANT Marc | 76 |
21 | ZOETEMELK Joop | 68 |
36 | MADIOT Marc | 68 |
43 | KUIPER Hennie | 69 |
65 | WINNEN Peter | 60 |
66 | HOSTE Frank | 76 |
67 | HERRERA Luis Alberto | 57 |
89 | DIDIER Lucien | 67 |
90 | YATES Sean | 74 |
94 | VAN VLIET Leo | 65 |
99 | BOURREAU Bernard | 63 |
105 | ROCHE Stephen | 74 |
108 | DE WOLF Fons | 75 |
110 | DE ROOIJ Theo | 69 |
112 | VANDERAERDEN Eric | 74 |
121 | GLAUS Gilbert | 67 |