Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.5 * weight + 221
This means that on average for every extra kilogram weight a rider loses -2.5 positions in the result.
Vanderaerden
1
74 kgHoste
3
76 kgHinault
4
62 kgKelly
5
77 kgGlaus
6
67 kgvan Vliet
10
65 kgLeMond
15
67 kgFignon
19
67 kgRoche
25
74 kgYates
32
74 kgDe Wolf
39
75 kgSergeant
40
76 kgHerrera
51
57 kgDidier
78
67 kgZoetemelk
87
68 kgKuiper
93
69 kgBourreau
97
63 kgWinnen
105
60 kgde Rooij
121
69 kgMadiot
123
68 kg
1
74 kgHoste
3
76 kgHinault
4
62 kgKelly
5
77 kgGlaus
6
67 kgvan Vliet
10
65 kgLeMond
15
67 kgFignon
19
67 kgRoche
25
74 kgYates
32
74 kgDe Wolf
39
75 kgSergeant
40
76 kgHerrera
51
57 kgDidier
78
67 kgZoetemelk
87
68 kgKuiper
93
69 kgBourreau
97
63 kgWinnen
105
60 kgde Rooij
121
69 kgMadiot
123
68 kg
Weight (KG) →
Result →
77
57
1
123
# | Rider | Weight (KG) |
---|---|---|
1 | VANDERAERDEN Eric | 74 |
3 | HOSTE Frank | 76 |
4 | HINAULT Bernard | 62 |
5 | KELLY Sean | 77 |
6 | GLAUS Gilbert | 67 |
10 | VAN VLIET Leo | 65 |
15 | LEMOND Greg | 67 |
19 | FIGNON Laurent | 67 |
25 | ROCHE Stephen | 74 |
32 | YATES Sean | 74 |
39 | DE WOLF Fons | 75 |
40 | SERGEANT Marc | 76 |
51 | HERRERA Luis Alberto | 57 |
78 | DIDIER Lucien | 67 |
87 | ZOETEMELK Joop | 68 |
93 | KUIPER Hennie | 69 |
97 | BOURREAU Bernard | 63 |
105 | WINNEN Peter | 60 |
121 | DE ROOIJ Theo | 69 |
123 | MADIOT Marc | 68 |